Step | Hyp | Ref
| Expression |
1 | | peano4nninf.s |
. . 3
ℕ∞ |
2 | 1 | nnsf 13885 |
. 2
ℕ∞ℕ∞ |
3 | | fveq1 5485 |
. . . . . . . . . . 11
|
4 | | fveq1 5485 |
. . . . . . . . . . 11
|
5 | 3, 4 | sseq12d 3173 |
. . . . . . . . . 10
|
6 | 5 | ralbidv 2466 |
. . . . . . . . 9
|
7 | | df-nninf 7085 |
. . . . . . . . 9
ℕ∞
|
8 | 6, 7 | elrab2 2885 |
. . . . . . . 8
ℕ∞
|
9 | 8 | simplbi 272 |
. . . . . . 7
ℕ∞ |
10 | | elmapfn 6637 |
. . . . . . 7
|
11 | 9, 10 | syl 14 |
. . . . . 6
ℕ∞ |
12 | 11 | ad2antrr 480 |
. . . . 5
ℕ∞
ℕ∞ |
13 | | fveq1 5485 |
. . . . . . . . . . 11
|
14 | | fveq1 5485 |
. . . . . . . . . . 11
|
15 | 13, 14 | sseq12d 3173 |
. . . . . . . . . 10
|
16 | 15 | ralbidv 2466 |
. . . . . . . . 9
|
17 | 16, 7 | elrab2 2885 |
. . . . . . . 8
ℕ∞
|
18 | 17 | simplbi 272 |
. . . . . . 7
ℕ∞ |
19 | | elmapfn 6637 |
. . . . . . 7
|
20 | 18, 19 | syl 14 |
. . . . . 6
ℕ∞ |
21 | 20 | ad2antlr 481 |
. . . . 5
ℕ∞
ℕ∞ |
22 | | simplr 520 |
. . . . . . 7
ℕ∞
ℕ∞ |
23 | 22 | fveq1d 5488 |
. . . . . 6
ℕ∞
ℕ∞ |
24 | | fveq1 5485 |
. . . . . . . . . . . 12
|
25 | 24 | ifeq2d 3538 |
. . . . . . . . . . 11
|
26 | 25 | mpteq2dv 4073 |
. . . . . . . . . 10
|
27 | | omex 4570 |
. . . . . . . . . . 11
|
28 | 27 | mptex 5711 |
. . . . . . . . . 10
|
29 | 26, 1, 28 | fvmpt 5563 |
. . . . . . . . 9
ℕ∞ |
30 | 29 | ad3antrrr 484 |
. . . . . . . 8
ℕ∞
ℕ∞ |
31 | | simpr 109 |
. . . . . . . . . 10
ℕ∞
ℕ∞ |
32 | 31 | eqeq1d 2174 |
. . . . . . . . 9
ℕ∞
ℕ∞
|
33 | 31 | unieqd 3800 |
. . . . . . . . . 10
ℕ∞
ℕ∞
|
34 | 33 | fveq2d 5490 |
. . . . . . . . 9
ℕ∞
ℕ∞ |
35 | 32, 34 | ifbieq2d 3544 |
. . . . . . . 8
ℕ∞
ℕ∞ |
36 | | peano2 4572 |
. . . . . . . . 9
|
37 | 36 | adantl 275 |
. . . . . . . 8
ℕ∞
ℕ∞
|
38 | | 1lt2o 6410 |
. . . . . . . . . 10
|
39 | 38 | a1i 9 |
. . . . . . . . 9
ℕ∞
ℕ∞ |
40 | | nninff 7087 |
. . . . . . . . . . 11
ℕ∞ |
41 | 40 | ad3antrrr 484 |
. . . . . . . . . 10
ℕ∞
ℕ∞ |
42 | | nnpredcl 4600 |
. . . . . . . . . . 11
|
43 | 37, 42 | syl 14 |
. . . . . . . . . 10
ℕ∞
ℕ∞
|
44 | 41, 43 | ffvelrnd 5621 |
. . . . . . . . 9
ℕ∞
ℕ∞ |
45 | | nndceq0 4595 |
. . . . . . . . . 10
DECID |
46 | 37, 45 | syl 14 |
. . . . . . . . 9
ℕ∞
ℕ∞
DECID |
47 | 39, 44, 46 | ifcldcd 3555 |
. . . . . . . 8
ℕ∞
ℕ∞ |
48 | 30, 35, 37, 47 | fvmptd 5567 |
. . . . . . 7
ℕ∞
ℕ∞ |
49 | | peano3 4573 |
. . . . . . . . . 10
|
50 | 49 | adantl 275 |
. . . . . . . . 9
ℕ∞
ℕ∞ |
51 | 50 | neneqd 2357 |
. . . . . . . 8
ℕ∞
ℕ∞
|
52 | 51 | iffalsed 3530 |
. . . . . . 7
ℕ∞
ℕ∞ |
53 | | nnord 4589 |
. . . . . . . . . . 11
|
54 | | ordtr 4356 |
. . . . . . . . . . 11
|
55 | 53, 54 | syl 14 |
. . . . . . . . . 10
|
56 | | unisucg 4392 |
. . . . . . . . . 10
|
57 | 55, 56 | mpbid 146 |
. . . . . . . . 9
|
58 | 57 | fveq2d 5490 |
. . . . . . . 8
|
59 | 58 | adantl 275 |
. . . . . . 7
ℕ∞
ℕ∞ |
60 | 48, 52, 59 | 3eqtrd 2202 |
. . . . . 6
ℕ∞
ℕ∞ |
61 | | fveq1 5485 |
. . . . . . . . . . . 12
|
62 | 61 | ifeq2d 3538 |
. . . . . . . . . . 11
|
63 | 62 | mpteq2dv 4073 |
. . . . . . . . . 10
|
64 | 27 | mptex 5711 |
. . . . . . . . . 10
|
65 | 63, 1, 64 | fvmpt 5563 |
. . . . . . . . 9
ℕ∞ |
66 | 65 | ad3antlr 485 |
. . . . . . . 8
ℕ∞
ℕ∞ |
67 | 33 | fveq2d 5490 |
. . . . . . . . 9
ℕ∞
ℕ∞ |
68 | 32, 67 | ifbieq2d 3544 |
. . . . . . . 8
ℕ∞
ℕ∞ |
69 | | nninff 7087 |
. . . . . . . . . . 11
ℕ∞ |
70 | 69 | ad3antlr 485 |
. . . . . . . . . 10
ℕ∞
ℕ∞ |
71 | 70, 43 | ffvelrnd 5621 |
. . . . . . . . 9
ℕ∞
ℕ∞ |
72 | 39, 71, 46 | ifcldcd 3555 |
. . . . . . . 8
ℕ∞
ℕ∞ |
73 | 66, 68, 37, 72 | fvmptd 5567 |
. . . . . . 7
ℕ∞
ℕ∞ |
74 | 51 | iffalsed 3530 |
. . . . . . 7
ℕ∞
ℕ∞ |
75 | 57 | fveq2d 5490 |
. . . . . . . 8
|
76 | 75 | adantl 275 |
. . . . . . 7
ℕ∞
ℕ∞ |
77 | 73, 74, 76 | 3eqtrd 2202 |
. . . . . 6
ℕ∞
ℕ∞ |
78 | 23, 60, 77 | 3eqtr3d 2206 |
. . . . 5
ℕ∞
ℕ∞ |
79 | 12, 21, 78 | eqfnfvd 5586 |
. . . 4
ℕ∞
ℕ∞ |
80 | 79 | ex 114 |
. . 3
ℕ∞
ℕ∞
|
81 | 80 | rgen2a 2520 |
. 2
ℕ∞
ℕ∞ |
82 | | dff13 5736 |
. 2
ℕ∞ℕ∞
ℕ∞ℕ∞
ℕ∞
ℕ∞ |
83 | 2, 81, 82 | mpbir2an 932 |
1
ℕ∞ℕ∞ |