Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  peano4nninf Unicode version

Theorem peano4nninf 13375
Description: The successor function on ℕ is one to one. Half of Lemma 3.4 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 31-Jul-2022.)
Hypothesis
Ref Expression
peano4nninf.s  |-  S  =  ( p  e. 
|->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) )
Assertion
Ref Expression
peano4nninf  |-  S : -1-1->
Distinct variable groups:    S, i    i, p
Allowed substitution hint:    S( p)

Proof of Theorem peano4nninf
Dummy variables  k  x  y  f  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano4nninf.s . . 3  |-  S  =  ( p  e. 
|->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) )
21nnsf 13374 . 2  |-  S : -->
3 fveq1 5428 . . . . . . . . . . 11  |-  ( f  =  x  ->  (
f `  suc  j )  =  ( x `  suc  j ) )
4 fveq1 5428 . . . . . . . . . . 11  |-  ( f  =  x  ->  (
f `  j )  =  ( x `  j ) )
53, 4sseq12d 3133 . . . . . . . . . 10  |-  ( f  =  x  ->  (
( f `  suc  j )  C_  (
f `  j )  <->  ( x `  suc  j
)  C_  ( x `  j ) ) )
65ralbidv 2438 . . . . . . . . 9  |-  ( f  =  x  ->  ( A. j  e.  om  ( f `  suc  j )  C_  (
f `  j )  <->  A. j  e.  om  (
x `  suc  j ) 
C_  ( x `  j ) ) )
7 df-nninf 7015 . . . . . . . . 9  |-  =  { f  e.  ( 2o  ^m  om )  |  A. j  e.  om  ( f `  suc  j )  C_  (
f `  j ) }
86, 7elrab2 2847 . . . . . . . 8  |-  ( x  e.  <->  ( x  e.  ( 2o 
^m  om )  /\  A. j  e.  om  (
x `  suc  j ) 
C_  ( x `  j ) ) )
98simplbi 272 . . . . . . 7  |-  ( x  e.  ->  x  e.  ( 2o 
^m  om ) )
10 elmapfn 6573 . . . . . . 7  |-  ( x  e.  ( 2o  ^m  om )  ->  x  Fn  om )
119, 10syl 14 . . . . . 6  |-  ( x  e.  ->  x  Fn  om )
1211ad2antrr 480 . . . . 5  |-  ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  ->  x  Fn  om )
13 fveq1 5428 . . . . . . . . . . 11  |-  ( f  =  y  ->  (
f `  suc  j )  =  ( y `  suc  j ) )
14 fveq1 5428 . . . . . . . . . . 11  |-  ( f  =  y  ->  (
f `  j )  =  ( y `  j ) )
1513, 14sseq12d 3133 . . . . . . . . . 10  |-  ( f  =  y  ->  (
( f `  suc  j )  C_  (
f `  j )  <->  ( y `  suc  j
)  C_  ( y `  j ) ) )
1615ralbidv 2438 . . . . . . . . 9  |-  ( f  =  y  ->  ( A. j  e.  om  ( f `  suc  j )  C_  (
f `  j )  <->  A. j  e.  om  (
y `  suc  j ) 
C_  ( y `  j ) ) )
1716, 7elrab2 2847 . . . . . . . 8  |-  ( y  e.  <->  ( y  e.  ( 2o 
^m  om )  /\  A. j  e.  om  (
y `  suc  j ) 
C_  ( y `  j ) ) )
1817simplbi 272 . . . . . . 7  |-  ( y  e.  ->  y  e.  ( 2o 
^m  om ) )
19 elmapfn 6573 . . . . . . 7  |-  ( y  e.  ( 2o  ^m  om )  ->  y  Fn  om )
2018, 19syl 14 . . . . . 6  |-  ( y  e.  ->  y  Fn  om )
2120ad2antlr 481 . . . . 5  |-  ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  ->  y  Fn  om )
22 simplr 520 . . . . . . 7  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  ( S `  x )  =  ( S `  y ) )
2322fveq1d 5431 . . . . . 6  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  (
( S `  x
) `  suc  k )  =  ( ( S `
 y ) `  suc  k ) )
24 fveq1 5428 . . . . . . . . . . . 12  |-  ( p  =  x  ->  (
p `  U. i )  =  ( x `  U. i ) )
2524ifeq2d 3495 . . . . . . . . . . 11  |-  ( p  =  x  ->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) )  =  if ( i  =  (/) ,  1o ,  ( x `  U. i ) ) )
2625mpteq2dv 4027 . . . . . . . . . 10  |-  ( p  =  x  ->  (
i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) )  =  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( x `
 U. i ) ) ) )
27 omex 4515 . . . . . . . . . . 11  |-  om  e.  _V
2827mptex 5654 . . . . . . . . . 10  |-  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( x `  U. i ) ) )  e.  _V
2926, 1, 28fvmpt 5506 . . . . . . . . 9  |-  ( x  e.  ->  ( S `  x
)  =  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( x `  U. i ) ) ) )
3029ad3antrrr 484 . . . . . . . 8  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  ( S `  x )  =  ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( x `  U. i ) ) ) )
31 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  /\  i  =  suc  k )  -> 
i  =  suc  k
)
3231eqeq1d 2149 . . . . . . . . 9  |-  ( ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  /\  i  =  suc  k )  -> 
( i  =  (/)  <->  suc  k  =  (/) ) )
3331unieqd 3755 . . . . . . . . . 10  |-  ( ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  /\  i  =  suc  k )  ->  U. i  =  U. suc  k )
3433fveq2d 5433 . . . . . . . . 9  |-  ( ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  /\  i  =  suc  k )  -> 
( x `  U. i )  =  ( x `  U. suc  k ) )
3532, 34ifbieq2d 3501 . . . . . . . 8  |-  ( ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  /\  i  =  suc  k )  ->  if ( i  =  (/) ,  1o ,  ( x `
 U. i ) )  =  if ( suc  k  =  (/) ,  1o ,  ( x `
 U. suc  k
) ) )
36 peano2 4517 . . . . . . . . 9  |-  ( k  e.  om  ->  suc  k  e.  om )
3736adantl 275 . . . . . . . 8  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  suc  k  e.  om )
38 1lt2o 6347 . . . . . . . . . 10  |-  1o  e.  2o
3938a1i 9 . . . . . . . . 9  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  1o  e.  2o )
40 nninff 13373 . . . . . . . . . . 11  |-  ( x  e.  ->  x : om --> 2o )
4140ad3antrrr 484 . . . . . . . . . 10  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  x : om --> 2o )
42 nnpredcl 4544 . . . . . . . . . . 11  |-  ( suc  k  e.  om  ->  U.
suc  k  e.  om )
4337, 42syl 14 . . . . . . . . . 10  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  U. suc  k  e.  om )
4441, 43ffvelrnd 5564 . . . . . . . . 9  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  (
x `  U. suc  k
)  e.  2o )
45 nndceq0 4539 . . . . . . . . . 10  |-  ( suc  k  e.  om  -> DECID  suc  k  =  (/) )
4637, 45syl 14 . . . . . . . . 9  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  -> DECID  suc  k  =  (/) )
4739, 44, 46ifcldcd 3512 . . . . . . . 8  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  if ( suc  k  =  (/) ,  1o ,  ( x `
 U. suc  k
) )  e.  2o )
4830, 35, 37, 47fvmptd 5510 . . . . . . 7  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  (
( S `  x
) `  suc  k )  =  if ( suc  k  =  (/) ,  1o ,  ( x `  U. suc  k ) ) )
49 peano3 4518 . . . . . . . . . 10  |-  ( k  e.  om  ->  suc  k  =/=  (/) )
5049adantl 275 . . . . . . . . 9  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  suc  k  =/=  (/) )
5150neneqd 2330 . . . . . . . 8  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  -.  suc  k  =  (/) )
5251iffalsed 3489 . . . . . . 7  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  if ( suc  k  =  (/) ,  1o ,  ( x `
 U. suc  k
) )  =  ( x `  U. suc  k ) )
53 nnord 4533 . . . . . . . . . . 11  |-  ( k  e.  om  ->  Ord  k )
54 ordtr 4308 . . . . . . . . . . 11  |-  ( Ord  k  ->  Tr  k
)
5553, 54syl 14 . . . . . . . . . 10  |-  ( k  e.  om  ->  Tr  k )
56 unisucg 4344 . . . . . . . . . 10  |-  ( k  e.  om  ->  ( Tr  k  <->  U. suc  k  =  k ) )
5755, 56mpbid 146 . . . . . . . . 9  |-  ( k  e.  om  ->  U. suc  k  =  k )
5857fveq2d 5433 . . . . . . . 8  |-  ( k  e.  om  ->  (
x `  U. suc  k
)  =  ( x `
 k ) )
5958adantl 275 . . . . . . 7  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  (
x `  U. suc  k
)  =  ( x `
 k ) )
6048, 52, 593eqtrd 2177 . . . . . 6  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  (
( S `  x
) `  suc  k )  =  ( x `  k ) )
61 fveq1 5428 . . . . . . . . . . . 12  |-  ( p  =  y  ->  (
p `  U. i )  =  ( y `  U. i ) )
6261ifeq2d 3495 . . . . . . . . . . 11  |-  ( p  =  y  ->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) )  =  if ( i  =  (/) ,  1o ,  ( y `  U. i ) ) )
6362mpteq2dv 4027 . . . . . . . . . 10  |-  ( p  =  y  ->  (
i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) )  =  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( y `
 U. i ) ) ) )
6427mptex 5654 . . . . . . . . . 10  |-  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( y `  U. i ) ) )  e.  _V
6563, 1, 64fvmpt 5506 . . . . . . . . 9  |-  ( y  e.  ->  ( S `  y
)  =  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( y `  U. i ) ) ) )
6665ad3antlr 485 . . . . . . . 8  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  ( S `  y )  =  ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( y `  U. i ) ) ) )
6733fveq2d 5433 . . . . . . . . 9  |-  ( ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  /\  i  =  suc  k )  -> 
( y `  U. i )  =  ( y `  U. suc  k ) )
6832, 67ifbieq2d 3501 . . . . . . . 8  |-  ( ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  /\  i  =  suc  k )  ->  if ( i  =  (/) ,  1o ,  ( y `
 U. i ) )  =  if ( suc  k  =  (/) ,  1o ,  ( y `
 U. suc  k
) ) )
69 nninff 13373 . . . . . . . . . . 11  |-  ( y  e.  ->  y : om --> 2o )
7069ad3antlr 485 . . . . . . . . . 10  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  y : om --> 2o )
7170, 43ffvelrnd 5564 . . . . . . . . 9  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  (
y `  U. suc  k
)  e.  2o )
7239, 71, 46ifcldcd 3512 . . . . . . . 8  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  if ( suc  k  =  (/) ,  1o ,  ( y `
 U. suc  k
) )  e.  2o )
7366, 68, 37, 72fvmptd 5510 . . . . . . 7  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  (
( S `  y
) `  suc  k )  =  if ( suc  k  =  (/) ,  1o ,  ( y `  U. suc  k ) ) )
7451iffalsed 3489 . . . . . . 7  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  if ( suc  k  =  (/) ,  1o ,  ( y `
 U. suc  k
) )  =  ( y `  U. suc  k ) )
7557fveq2d 5433 . . . . . . . 8  |-  ( k  e.  om  ->  (
y `  U. suc  k
)  =  ( y `
 k ) )
7675adantl 275 . . . . . . 7  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  (
y `  U. suc  k
)  =  ( y `
 k ) )
7773, 74, 763eqtrd 2177 . . . . . 6  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  (
( S `  y
) `  suc  k )  =  ( y `  k ) )
7823, 60, 773eqtr3d 2181 . . . . 5  |-  ( ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  /\  k  e.  om )  ->  (
x `  k )  =  ( y `  k ) )
7912, 21, 78eqfnfvd 5529 . . . 4  |-  ( ( ( x  e.  /\  y  e. )  /\  ( S `
 x )  =  ( S `  y
) )  ->  x  =  y )
8079ex 114 . . 3  |-  ( ( x  e.  /\  y  e. )  ->  ( ( S `  x )  =  ( S `  y )  ->  x  =  y ) )
8180rgen2a 2489 . 2  |-  A. x  e.  A. y  e.  ( ( S `  x )  =  ( S `  y )  ->  x  =  y )
82 dff13 5677 . 2  |-  ( S : -1-1->  <->  ( S : -->  /\  A. x  e.  A. y  e.  ( ( S `  x )  =  ( S `  y )  ->  x  =  y ) ) )
832, 81, 82mpbir2an 927 1  |-  S : -1-1->
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103  DECID wdc 820    = wceq 1332    e. wcel 1481    =/= wne 2309   A.wral 2417    C_ wss 3076   (/)c0 3368   ifcif 3479   U.cuni 3744    |-> cmpt 3997   Tr wtr 4034   Ord word 4292   suc csuc 4295   omcom 4512    Fn wfn 5126   -->wf 5127   -1-1->wf1 5128   ` cfv 5131  (class class class)co 5782   1oc1o 6314   2oc2o 6315    ^m cmap 6550  ℕxnninf 7013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1o 6321  df-2o 6322  df-map 6552  df-nninf 7015
This theorem is referenced by:  exmidsbthrlem  13392
  Copyright terms: Public domain W3C validator