Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfalllem1 Unicode version

Theorem nninfalllem1 13037
Description: Lemma for nninfall 13038. (Contributed by Jim Kingdon, 1-Aug-2022.)
Hypotheses
Ref Expression
nninfall.q  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
nninfall.inf  |-  ( ph  ->  ( Q `  (
x  e.  om  |->  1o ) )  =  1o )
nninfall.n  |-  ( ph  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
nninfalllem1.p  |-  ( ph  ->  P  e. )
nninfalllem1.n0  |-  ( ph  ->  ( Q `  P
)  =  (/) )
Assertion
Ref Expression
nninfalllem1  |-  ( ph  ->  A. n  e.  om  ( P `  n )  =  1o )
Distinct variable groups:    P, i    Q, n    i, n, ph
Allowed substitution hints:    ph( x)    P( x, n)    Q( x, i)

Proof of Theorem nninfalllem1
Dummy variables  f  j  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5387 . . . . . 6  |-  ( u  =  v  ->  ( P `  u )  =  ( P `  v ) )
21eqeq1d 2124 . . . . 5  |-  ( u  =  v  ->  (
( P `  u
)  =  1o  <->  ( P `  v )  =  1o ) )
32imbi2d 229 . . . 4  |-  ( u  =  v  ->  (
( ph  ->  ( P `
 u )  =  1o )  <->  ( ph  ->  ( P `  v
)  =  1o ) ) )
4 fveq2 5387 . . . . . 6  |-  ( u  =  n  ->  ( P `  u )  =  ( P `  n ) )
54eqeq1d 2124 . . . . 5  |-  ( u  =  n  ->  (
( P `  u
)  =  1o  <->  ( P `  n )  =  1o ) )
65imbi2d 229 . . . 4  |-  ( u  =  n  ->  (
( ph  ->  ( P `
 u )  =  1o )  <->  ( ph  ->  ( P `  n
)  =  1o ) ) )
7 1n0 6295 . . . . . . . 8  |-  1o  =/=  (/)
87nesymi 2329 . . . . . . 7  |-  -.  (/)  =  1o
9 nninfalllem1.p . . . . . . . . . . . 12  |-  ( ph  ->  P  e. )
109ad2antlr 478 . . . . . . . . . . 11  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  ->  P  e. )
11 simplll 505 . . . . . . . . . . 11  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  ->  u  e.  om )
12 simplr 502 . . . . . . . . . . . 12  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  ->  ph )
13 simpllr 506 . . . . . . . . . . . . 13  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  ->  A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )
14 r19.21v 2484 . . . . . . . . . . . . 13  |-  ( A. v  e.  u  ( ph  ->  ( P `  v )  =  1o )  <->  ( ph  ->  A. v  e.  u  ( P `  v )  =  1o ) )
1513, 14sylib 121 . . . . . . . . . . . 12  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  -> 
( ph  ->  A. v  e.  u  ( P `  v )  =  1o ) )
1612, 15mpd 13 . . . . . . . . . . 11  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  ->  A. v  e.  u  ( P `  v )  =  1o )
17 simpr 109 . . . . . . . . . . 11  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  -> 
( P `  u
)  =  (/) )
1810, 11, 16, 17nninfalllemn 13036 . . . . . . . . . 10  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  ->  P  =  ( i  e.  om  |->  if ( i  e.  u ,  1o ,  (/) ) ) )
1918fveq2d 5391 . . . . . . . . 9  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  -> 
( Q `  P
)  =  ( Q `
 ( i  e. 
om  |->  if ( i  e.  u ,  1o ,  (/) ) ) ) )
20 nninfalllem1.n0 . . . . . . . . . 10  |-  ( ph  ->  ( Q `  P
)  =  (/) )
2120ad2antlr 478 . . . . . . . . 9  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  -> 
( Q `  P
)  =  (/) )
22 elequ2 1674 . . . . . . . . . . . . . 14  |-  ( n  =  u  ->  (
i  e.  n  <->  i  e.  u ) )
2322ifbid 3461 . . . . . . . . . . . . 13  |-  ( n  =  u  ->  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  u ,  1o ,  (/) ) )
2423mpteq2dv 3987 . . . . . . . . . . . 12  |-  ( n  =  u  ->  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  u ,  1o ,  (/) ) ) )
2524fveq2d 5391 . . . . . . . . . . 11  |-  ( n  =  u  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( Q `  ( i  e.  om  |->  if ( i  e.  u ,  1o ,  (/) ) ) ) )
2625eqeq1d 2124 . . . . . . . . . 10  |-  ( n  =  u  ->  (
( Q `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o  <->  ( Q `  ( i  e.  om  |->  if ( i  e.  u ,  1o ,  (/) ) ) )  =  1o ) )
27 nninfall.n . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
2827ad2antlr 478 . . . . . . . . . 10  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
2926, 28, 11rspcdva 2766 . . . . . . . . 9  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  -> 
( Q `  (
i  e.  om  |->  if ( i  e.  u ,  1o ,  (/) ) ) )  =  1o )
3019, 21, 293eqtr3d 2156 . . . . . . . 8  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  ->  (/)  =  1o )
3130ex 114 . . . . . . 7  |-  ( ( ( u  e.  om  /\ 
A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )  /\  ph )  ->  ( ( P `
 u )  =  (/)  ->  (/)  =  1o ) )
328, 31mtoi 636 . . . . . 6  |-  ( ( ( u  e.  om  /\ 
A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )  /\  ph )  ->  -.  ( P `  u )  =  (/) )
33 fveq1 5386 . . . . . . . . . . . . . . . 16  |-  ( f  =  P  ->  (
f `  suc  j )  =  ( P `  suc  j ) )
34 fveq1 5386 . . . . . . . . . . . . . . . 16  |-  ( f  =  P  ->  (
f `  j )  =  ( P `  j ) )
3533, 34sseq12d 3096 . . . . . . . . . . . . . . 15  |-  ( f  =  P  ->  (
( f `  suc  j )  C_  (
f `  j )  <->  ( P `  suc  j
)  C_  ( P `  j ) ) )
3635ralbidv 2412 . . . . . . . . . . . . . 14  |-  ( f  =  P  ->  ( A. j  e.  om  ( f `  suc  j )  C_  (
f `  j )  <->  A. j  e.  om  ( P `  suc  j ) 
C_  ( P `  j ) ) )
37 df-nninf 6973 . . . . . . . . . . . . . 14  |-  =  { f  e.  ( 2o  ^m  om )  |  A. j  e.  om  ( f `  suc  j )  C_  (
f `  j ) }
3836, 37elrab2 2814 . . . . . . . . . . . . 13  |-  ( P  e.  <->  ( P  e.  ( 2o 
^m  om )  /\  A. j  e.  om  ( P `  suc  j ) 
C_  ( P `  j ) ) )
399, 38sylib 121 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  e.  ( 2o  ^m  om )  /\  A. j  e.  om  ( P `  suc  j
)  C_  ( P `  j ) ) )
4039simpld 111 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  ( 2o 
^m  om ) )
41 elmapi 6530 . . . . . . . . . . 11  |-  ( P  e.  ( 2o  ^m  om )  ->  P : om
--> 2o )
4240, 41syl 14 . . . . . . . . . 10  |-  ( ph  ->  P : om --> 2o )
4342adantl 273 . . . . . . . . 9  |-  ( ( ( u  e.  om  /\ 
A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )  /\  ph )  ->  P : om --> 2o )
44 simpll 501 . . . . . . . . 9  |-  ( ( ( u  e.  om  /\ 
A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )  /\  ph )  ->  u  e.  om )
4543, 44ffvelrnd 5522 . . . . . . . 8  |-  ( ( ( u  e.  om  /\ 
A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )  /\  ph )  ->  ( P `  u )  e.  2o )
46 elpri 3518 . . . . . . . . 9  |-  ( ( P `  u )  e.  { (/) ,  1o }  ->  ( ( P `
 u )  =  (/)  \/  ( P `  u )  =  1o ) )
47 df2o3 6293 . . . . . . . . 9  |-  2o  =  { (/) ,  1o }
4846, 47eleq2s 2210 . . . . . . . 8  |-  ( ( P `  u )  e.  2o  ->  (
( P `  u
)  =  (/)  \/  ( P `  u )  =  1o ) )
4945, 48syl 14 . . . . . . 7  |-  ( ( ( u  e.  om  /\ 
A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )  /\  ph )  ->  ( ( P `
 u )  =  (/)  \/  ( P `  u )  =  1o ) )
5049orcomd 701 . . . . . 6  |-  ( ( ( u  e.  om  /\ 
A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )  /\  ph )  ->  ( ( P `
 u )  =  1o  \/  ( P `
 u )  =  (/) ) )
5132, 50ecased 1310 . . . . 5  |-  ( ( ( u  e.  om  /\ 
A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )  /\  ph )  ->  ( P `  u )  =  1o )
5251exp31 359 . . . 4  |-  ( u  e.  om  ->  ( A. v  e.  u  ( ph  ->  ( P `  v )  =  1o )  ->  ( ph  ->  ( P `  u
)  =  1o ) ) )
533, 6, 52omsinds 4503 . . 3  |-  ( n  e.  om  ->  ( ph  ->  ( P `  n )  =  1o ) )
5453impcom 124 . 2  |-  ( (
ph  /\  n  e.  om )  ->  ( P `  n )  =  1o )
5554ralrimiva 2480 1  |-  ( ph  ->  A. n  e.  om  ( P `  n )  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 680    = wceq 1314    e. wcel 1463   A.wral 2391    C_ wss 3039   (/)c0 3331   ifcif 3442   {cpr 3496    |-> cmpt 3957   suc csuc 4255   omcom 4472   -->wf 5087   ` cfv 5091  (class class class)co 5740   1oc1o 6272   2oc2o 6273    ^m cmap 6508  ℕxnninf 6971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-iord 4256  df-on 4258  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1o 6279  df-2o 6280  df-map 6510  df-nninf 6973
This theorem is referenced by:  nninfall  13038
  Copyright terms: Public domain W3C validator