Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfalllem1 Unicode version

Theorem nninfalllem1 16147
Description: Lemma for nninfall 16148. (Contributed by Jim Kingdon, 1-Aug-2022.)
Hypotheses
Ref Expression
nninfall.q  |-  ( ph  ->  Q  e.  ( 2o 
^m ) )
nninfall.inf  |-  ( ph  ->  ( Q `  (
x  e.  om  |->  1o ) )  =  1o )
nninfall.n  |-  ( ph  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
nninfalllem1.p  |-  ( ph  ->  P  e. )
nninfalllem1.n0  |-  ( ph  ->  ( Q `  P
)  =  (/) )
Assertion
Ref Expression
nninfalllem1  |-  ( ph  ->  A. n  e.  om  ( P `  n )  =  1o )
Distinct variable groups:    P, i    Q, n    i, n, ph
Allowed substitution hints:    ph( x)    P( x, n)    Q( x, i)

Proof of Theorem nninfalllem1
Dummy variables  f  j  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5599 . . . . . 6  |-  ( u  =  v  ->  ( P `  u )  =  ( P `  v ) )
21eqeq1d 2216 . . . . 5  |-  ( u  =  v  ->  (
( P `  u
)  =  1o  <->  ( P `  v )  =  1o ) )
32imbi2d 230 . . . 4  |-  ( u  =  v  ->  (
( ph  ->  ( P `
 u )  =  1o )  <->  ( ph  ->  ( P `  v
)  =  1o ) ) )
4 fveq2 5599 . . . . . 6  |-  ( u  =  n  ->  ( P `  u )  =  ( P `  n ) )
54eqeq1d 2216 . . . . 5  |-  ( u  =  n  ->  (
( P `  u
)  =  1o  <->  ( P `  n )  =  1o ) )
65imbi2d 230 . . . 4  |-  ( u  =  n  ->  (
( ph  ->  ( P `
 u )  =  1o )  <->  ( ph  ->  ( P `  n
)  =  1o ) ) )
7 1n0 6541 . . . . . . . 8  |-  1o  =/=  (/)
87nesymi 2424 . . . . . . 7  |-  -.  (/)  =  1o
9 nninfalllem1.p . . . . . . . . . . . 12  |-  ( ph  ->  P  e. )
109ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  ->  P  e. )
11 simplll 533 . . . . . . . . . . 11  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  ->  u  e.  om )
12 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  ->  ph )
13 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  ->  A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )
14 r19.21v 2585 . . . . . . . . . . . . 13  |-  ( A. v  e.  u  ( ph  ->  ( P `  v )  =  1o )  <->  ( ph  ->  A. v  e.  u  ( P `  v )  =  1o ) )
1513, 14sylib 122 . . . . . . . . . . . 12  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  -> 
( ph  ->  A. v  e.  u  ( P `  v )  =  1o ) )
1612, 15mpd 13 . . . . . . . . . . 11  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  ->  A. v  e.  u  ( P `  v )  =  1o )
17 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  -> 
( P `  u
)  =  (/) )
1810, 11, 16, 17nnnninfeq 7256 . . . . . . . . . 10  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  ->  P  =  ( i  e.  om  |->  if ( i  e.  u ,  1o ,  (/) ) ) )
1918fveq2d 5603 . . . . . . . . 9  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  -> 
( Q `  P
)  =  ( Q `
 ( i  e. 
om  |->  if ( i  e.  u ,  1o ,  (/) ) ) ) )
20 nninfalllem1.n0 . . . . . . . . . 10  |-  ( ph  ->  ( Q `  P
)  =  (/) )
2120ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  -> 
( Q `  P
)  =  (/) )
22 elequ2 2183 . . . . . . . . . . . . . 14  |-  ( n  =  u  ->  (
i  e.  n  <->  i  e.  u ) )
2322ifbid 3601 . . . . . . . . . . . . 13  |-  ( n  =  u  ->  if ( i  e.  n ,  1o ,  (/) )  =  if ( i  e.  u ,  1o ,  (/) ) )
2423mpteq2dv 4151 . . . . . . . . . . . 12  |-  ( n  =  u  ->  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  u ,  1o ,  (/) ) ) )
2524fveq2d 5603 . . . . . . . . . . 11  |-  ( n  =  u  ->  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( Q `  ( i  e.  om  |->  if ( i  e.  u ,  1o ,  (/) ) ) ) )
2625eqeq1d 2216 . . . . . . . . . 10  |-  ( n  =  u  ->  (
( Q `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o  <->  ( Q `  ( i  e.  om  |->  if ( i  e.  u ,  1o ,  (/) ) ) )  =  1o ) )
27 nninfall.n . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
2827ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  ->  A. n  e.  om  ( Q `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
2926, 28, 11rspcdva 2889 . . . . . . . . 9  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  -> 
( Q `  (
i  e.  om  |->  if ( i  e.  u ,  1o ,  (/) ) ) )  =  1o )
3019, 21, 293eqtr3d 2248 . . . . . . . 8  |-  ( ( ( ( u  e. 
om  /\  A. v  e.  u  ( ph  ->  ( P `  v
)  =  1o ) )  /\  ph )  /\  ( P `  u
)  =  (/) )  ->  (/)  =  1o )
3130ex 115 . . . . . . 7  |-  ( ( ( u  e.  om  /\ 
A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )  /\  ph )  ->  ( ( P `
 u )  =  (/)  ->  (/)  =  1o ) )
328, 31mtoi 666 . . . . . 6  |-  ( ( ( u  e.  om  /\ 
A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )  /\  ph )  ->  -.  ( P `  u )  =  (/) )
33 fveq1 5598 . . . . . . . . . . . . . . . 16  |-  ( f  =  P  ->  (
f `  suc  j )  =  ( P `  suc  j ) )
34 fveq1 5598 . . . . . . . . . . . . . . . 16  |-  ( f  =  P  ->  (
f `  j )  =  ( P `  j ) )
3533, 34sseq12d 3232 . . . . . . . . . . . . . . 15  |-  ( f  =  P  ->  (
( f `  suc  j )  C_  (
f `  j )  <->  ( P `  suc  j
)  C_  ( P `  j ) ) )
3635ralbidv 2508 . . . . . . . . . . . . . 14  |-  ( f  =  P  ->  ( A. j  e.  om  ( f `  suc  j )  C_  (
f `  j )  <->  A. j  e.  om  ( P `  suc  j ) 
C_  ( P `  j ) ) )
37 df-nninf 7248 . . . . . . . . . . . . . 14  |-  =  { f  e.  ( 2o  ^m  om )  |  A. j  e.  om  ( f `  suc  j )  C_  (
f `  j ) }
3836, 37elrab2 2939 . . . . . . . . . . . . 13  |-  ( P  e.  <->  ( P  e.  ( 2o 
^m  om )  /\  A. j  e.  om  ( P `  suc  j ) 
C_  ( P `  j ) ) )
399, 38sylib 122 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  e.  ( 2o  ^m  om )  /\  A. j  e.  om  ( P `  suc  j
)  C_  ( P `  j ) ) )
4039simpld 112 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  ( 2o 
^m  om ) )
41 elmapi 6780 . . . . . . . . . . 11  |-  ( P  e.  ( 2o  ^m  om )  ->  P : om
--> 2o )
4240, 41syl 14 . . . . . . . . . 10  |-  ( ph  ->  P : om --> 2o )
4342adantl 277 . . . . . . . . 9  |-  ( ( ( u  e.  om  /\ 
A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )  /\  ph )  ->  P : om --> 2o )
44 simpll 527 . . . . . . . . 9  |-  ( ( ( u  e.  om  /\ 
A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )  /\  ph )  ->  u  e.  om )
4543, 44ffvelcdmd 5739 . . . . . . . 8  |-  ( ( ( u  e.  om  /\ 
A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )  /\  ph )  ->  ( P `  u )  e.  2o )
46 elpri 3666 . . . . . . . . 9  |-  ( ( P `  u )  e.  { (/) ,  1o }  ->  ( ( P `
 u )  =  (/)  \/  ( P `  u )  =  1o ) )
47 df2o3 6539 . . . . . . . . 9  |-  2o  =  { (/) ,  1o }
4846, 47eleq2s 2302 . . . . . . . 8  |-  ( ( P `  u )  e.  2o  ->  (
( P `  u
)  =  (/)  \/  ( P `  u )  =  1o ) )
4945, 48syl 14 . . . . . . 7  |-  ( ( ( u  e.  om  /\ 
A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )  /\  ph )  ->  ( ( P `
 u )  =  (/)  \/  ( P `  u )  =  1o ) )
5049orcomd 731 . . . . . 6  |-  ( ( ( u  e.  om  /\ 
A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )  /\  ph )  ->  ( ( P `
 u )  =  1o  \/  ( P `
 u )  =  (/) ) )
5132, 50ecased 1362 . . . . 5  |-  ( ( ( u  e.  om  /\ 
A. v  e.  u  ( ph  ->  ( P `  v )  =  1o ) )  /\  ph )  ->  ( P `  u )  =  1o )
5251exp31 364 . . . 4  |-  ( u  e.  om  ->  ( A. v  e.  u  ( ph  ->  ( P `  v )  =  1o )  ->  ( ph  ->  ( P `  u
)  =  1o ) ) )
533, 6, 52omsinds 4688 . . 3  |-  ( n  e.  om  ->  ( ph  ->  ( P `  n )  =  1o ) )
5453impcom 125 . 2  |-  ( (
ph  /\  n  e.  om )  ->  ( P `  n )  =  1o )
5554ralrimiva 2581 1  |-  ( ph  ->  A. n  e.  om  ( P `  n )  =  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178   A.wral 2486    C_ wss 3174   (/)c0 3468   ifcif 3579   {cpr 3644    |-> cmpt 4121   suc csuc 4430   omcom 4656   -->wf 5286   ` cfv 5290  (class class class)co 5967   1oc1o 6518   2oc2o 6519    ^m cmap 6758  ℕxnninf 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1o 6525  df-2o 6526  df-map 6760  df-nninf 7248
This theorem is referenced by:  nninfall  16148
  Copyright terms: Public domain W3C validator