| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfself | Unicode version | ||
| Description: Domain and range of the selection function for ℕ∞. (Contributed by Jim Kingdon, 6-Aug-2022.) |
| Ref | Expression |
|---|---|
| nninfsel.e |
|
| Ref | Expression |
|---|---|
| nninfself |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfsel.e |
. 2
| |
| 2 | nninfsellemcl 16377 |
. . . . 5
| |
| 3 | eqid 2229 |
. . . . 5
| |
| 4 | 2, 3 | fmptd 5789 |
. . . 4
|
| 5 | 2onn 6667 |
. . . . . 6
| |
| 6 | 5 | a1i 9 |
. . . . 5
|
| 7 | omex 4685 |
. . . . . 6
| |
| 8 | 7 | a1i 9 |
. . . . 5
|
| 9 | 6, 8 | elmapd 6809 |
. . . 4
|
| 10 | 4, 9 | mpbird 167 |
. . 3
|
| 11 | nninfsellemsuc 16378 |
. . . . 5
| |
| 12 | peano2 4687 |
. . . . . 6
| |
| 13 | nninfsellemcl 16377 |
. . . . . . 7
| |
| 14 | 12, 13 | sylan2 286 |
. . . . . 6
|
| 15 | suceq 4493 |
. . . . . . . . 9
| |
| 16 | 15 | raleqdv 2734 |
. . . . . . . 8
|
| 17 | 16 | ifbid 3624 |
. . . . . . 7
|
| 18 | 17, 3 | fvmptg 5710 |
. . . . . 6
|
| 19 | 12, 14, 18 | syl2an2 596 |
. . . . 5
|
| 20 | simpr 110 |
. . . . . 6
| |
| 21 | nninfsellemcl 16377 |
. . . . . 6
| |
| 22 | suceq 4493 |
. . . . . . . . 9
| |
| 23 | 22 | raleqdv 2734 |
. . . . . . . 8
|
| 24 | 23 | ifbid 3624 |
. . . . . . 7
|
| 25 | 24, 3 | fvmptg 5710 |
. . . . . 6
|
| 26 | 20, 21, 25 | syl2anc 411 |
. . . . 5
|
| 27 | 11, 19, 26 | 3sstr4d 3269 |
. . . 4
|
| 28 | 27 | ralrimiva 2603 |
. . 3
|
| 29 | fveq1 5626 |
. . . . . 6
| |
| 30 | fveq1 5626 |
. . . . . 6
| |
| 31 | 29, 30 | sseq12d 3255 |
. . . . 5
|
| 32 | 31 | ralbidv 2530 |
. . . 4
|
| 33 | df-nninf 7287 |
. . . 4
| |
| 34 | 32, 33 | elrab2 2962 |
. . 3
|
| 35 | 10, 28, 34 | sylanbrc 417 |
. 2
|
| 36 | 1, 35 | fmpti 5787 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1o 6562 df-2o 6563 df-map 6797 df-nninf 7287 |
| This theorem is referenced by: nninfsellemeq 16380 nninfsellemeqinf 16382 nninfomnilem 16384 |
| Copyright terms: Public domain | W3C validator |