| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfself | Unicode version | ||
| Description: Domain and range of the selection function for ℕ∞. (Contributed by Jim Kingdon, 6-Aug-2022.) |
| Ref | Expression |
|---|---|
| nninfsel.e |
|
| Ref | Expression |
|---|---|
| nninfself |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfsel.e |
. 2
| |
| 2 | nninfsellemcl 15742 |
. . . . 5
| |
| 3 | eqid 2196 |
. . . . 5
| |
| 4 | 2, 3 | fmptd 5719 |
. . . 4
|
| 5 | 2onn 6588 |
. . . . . 6
| |
| 6 | 5 | a1i 9 |
. . . . 5
|
| 7 | omex 4630 |
. . . . . 6
| |
| 8 | 7 | a1i 9 |
. . . . 5
|
| 9 | 6, 8 | elmapd 6730 |
. . . 4
|
| 10 | 4, 9 | mpbird 167 |
. . 3
|
| 11 | nninfsellemsuc 15743 |
. . . . 5
| |
| 12 | peano2 4632 |
. . . . . 6
| |
| 13 | nninfsellemcl 15742 |
. . . . . . 7
| |
| 14 | 12, 13 | sylan2 286 |
. . . . . 6
|
| 15 | suceq 4438 |
. . . . . . . . 9
| |
| 16 | 15 | raleqdv 2699 |
. . . . . . . 8
|
| 17 | 16 | ifbid 3583 |
. . . . . . 7
|
| 18 | 17, 3 | fvmptg 5640 |
. . . . . 6
|
| 19 | 12, 14, 18 | syl2an2 594 |
. . . . 5
|
| 20 | simpr 110 |
. . . . . 6
| |
| 21 | nninfsellemcl 15742 |
. . . . . 6
| |
| 22 | suceq 4438 |
. . . . . . . . 9
| |
| 23 | 22 | raleqdv 2699 |
. . . . . . . 8
|
| 24 | 23 | ifbid 3583 |
. . . . . . 7
|
| 25 | 24, 3 | fvmptg 5640 |
. . . . . 6
|
| 26 | 20, 21, 25 | syl2anc 411 |
. . . . 5
|
| 27 | 11, 19, 26 | 3sstr4d 3229 |
. . . 4
|
| 28 | 27 | ralrimiva 2570 |
. . 3
|
| 29 | fveq1 5560 |
. . . . . 6
| |
| 30 | fveq1 5560 |
. . . . . 6
| |
| 31 | 29, 30 | sseq12d 3215 |
. . . . 5
|
| 32 | 31 | ralbidv 2497 |
. . . 4
|
| 33 | df-nninf 7195 |
. . . 4
| |
| 34 | 32, 33 | elrab2 2923 |
. . 3
|
| 35 | 10, 28, 34 | sylanbrc 417 |
. 2
|
| 36 | 1, 35 | fmpti 5717 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1o 6483 df-2o 6484 df-map 6718 df-nninf 7195 |
| This theorem is referenced by: nninfsellemeq 15745 nninfsellemeqinf 15747 nninfomnilem 15749 |
| Copyright terms: Public domain | W3C validator |