Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfself Unicode version

Theorem nninfself 15950
Description: Domain and range of the selection function for ℕ. (Contributed by Jim Kingdon, 6-Aug-2022.)
Hypothesis
Ref Expression
nninfsel.e  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
Assertion
Ref Expression
nninfself  |-  E :
( 2o  ^m ) -->
Distinct variable groups:    i, k, n   
k, q, n
Allowed substitution hints:    E( i, k, n, q)

Proof of Theorem nninfself
Dummy variables  f  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfsel.e . 2  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
2 nninfsellemcl 15948 . . . . 5  |-  ( ( q  e.  ( 2o 
^m )  /\  n  e.  om )  ->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )
3 eqid 2205 . . . . 5  |-  ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  =  ( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
42, 3fmptd 5734 . . . 4  |-  ( q  e.  ( 2o  ^m )  -> 
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) : om --> 2o )
5 2onn 6607 . . . . . 6  |-  2o  e.  om
65a1i 9 . . . . 5  |-  ( q  e.  ( 2o  ^m )  ->  2o  e.  om )
7 omex 4641 . . . . . 6  |-  om  e.  _V
87a1i 9 . . . . 5  |-  ( q  e.  ( 2o  ^m )  ->  om  e.  _V )
96, 8elmapd 6749 . . . 4  |-  ( q  e.  ( 2o  ^m )  -> 
( ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e.  ( 2o  ^m  om )  <->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) : om --> 2o ) )
104, 9mpbird 167 . . 3  |-  ( q  e.  ( 2o  ^m )  -> 
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e.  ( 2o  ^m  om ) )
11 nninfsellemsuc 15949 . . . . 5  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  if ( A. k  e.  suc  suc  j
( q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  if ( A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
12 peano2 4643 . . . . . 6  |-  ( j  e.  om  ->  suc  j  e.  om )
13 nninfsellemcl 15948 . . . . . . 7  |-  ( ( q  e.  ( 2o 
^m )  /\  suc  j  e. 
om )  ->  if ( A. k  e.  suc  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )
1412, 13sylan2 286 . . . . . 6  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  if ( A. k  e.  suc  suc  j
( q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )
15 suceq 4449 . . . . . . . . 9  |-  ( n  =  suc  j  ->  suc  n  =  suc  suc  j )
1615raleqdv 2708 . . . . . . . 8  |-  ( n  =  suc  j  -> 
( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  suc  suc  j (
q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
1716ifbid 3592 . . . . . . 7  |-  ( n  =  suc  j  ->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. k  e. 
suc  suc  j ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
1817, 3fvmptg 5655 . . . . . 6  |-  ( ( suc  j  e.  om  /\  if ( A. k  e.  suc  suc  j (
q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )  ->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  =  if ( A. k  e. 
suc  suc  j ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
1912, 14, 18syl2an2 594 . . . . 5  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  =  if ( A. k  e. 
suc  suc  j ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
20 simpr 110 . . . . . 6  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  j  e.  om )
21 nninfsellemcl 15948 . . . . . 6  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  if ( A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )
22 suceq 4449 . . . . . . . . 9  |-  ( n  =  j  ->  suc  n  =  suc  j )
2322raleqdv 2708 . . . . . . . 8  |-  ( n  =  j  ->  ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
2423ifbid 3592 . . . . . . 7  |-  ( n  =  j  ->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
2524, 3fvmptg 5655 . . . . . 6  |-  ( ( j  e.  om  /\  if ( A. k  e. 
suc  j ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )  ->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j
)  =  if ( A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
2620, 21, 25syl2anc 411 . . . . 5  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j
)  =  if ( A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
2711, 19, 263sstr4d 3238 . . . 4  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  C_  (
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j ) )
2827ralrimiva 2579 . . 3  |-  ( q  e.  ( 2o  ^m )  ->  A. j  e.  om  ( ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `
 suc  j )  C_  ( ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `
 j ) )
29 fveq1 5575 . . . . . 6  |-  ( f  =  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  ->  ( f `  suc  j )  =  ( ( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j ) )
30 fveq1 5575 . . . . . 6  |-  ( f  =  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  ->  ( f `  j )  =  ( ( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j ) )
3129, 30sseq12d 3224 . . . . 5  |-  ( f  =  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  ->  ( ( f `
 suc  j )  C_  ( f `  j
)  <->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  C_  (
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j ) ) )
3231ralbidv 2506 . . . 4  |-  ( f  =  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  ->  ( A. j  e.  om  ( f `  suc  j )  C_  (
f `  j )  <->  A. j  e.  om  (
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  C_  (
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j ) ) )
33 df-nninf 7222 . . . 4  |-  =  { f  e.  ( 2o  ^m  om )  |  A. j  e.  om  ( f `  suc  j )  C_  (
f `  j ) }
3432, 33elrab2 2932 . . 3  |-  ( ( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e.  <->  ( (
n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e.  ( 2o  ^m  om )  /\  A. j  e. 
om  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  C_  (
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j ) ) )
3510, 28, 34sylanbrc 417 . 2  |-  ( q  e.  ( 2o  ^m )  -> 
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e. )
361, 35fmpti 5732 1  |-  E :
( 2o  ^m ) -->
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772    C_ wss 3166   (/)c0 3460   ifcif 3571    |-> cmpt 4105   suc csuc 4412   omcom 4638   -->wf 5267   ` cfv 5271  (class class class)co 5944   1oc1o 6495   2oc2o 6496    ^m cmap 6735  ℕxnninf 7221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1o 6502  df-2o 6503  df-map 6737  df-nninf 7222
This theorem is referenced by:  nninfsellemeq  15951  nninfsellemeqinf  15953  nninfomnilem  15955
  Copyright terms: Public domain W3C validator