Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfself Unicode version

Theorem nninfself 13903
Description: Domain and range of the selection function for ℕ. (Contributed by Jim Kingdon, 6-Aug-2022.)
Hypothesis
Ref Expression
nninfsel.e  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
Assertion
Ref Expression
nninfself  |-  E :
( 2o  ^m ) -->
Distinct variable groups:    i, k, n   
k, q, n
Allowed substitution hints:    E( i, k, n, q)

Proof of Theorem nninfself
Dummy variables  f  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfsel.e . 2  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
2 nninfsellemcl 13901 . . . . 5  |-  ( ( q  e.  ( 2o 
^m )  /\  n  e.  om )  ->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )
3 eqid 2165 . . . . 5  |-  ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  =  ( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
42, 3fmptd 5639 . . . 4  |-  ( q  e.  ( 2o  ^m )  -> 
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) : om --> 2o )
5 2onn 6489 . . . . . 6  |-  2o  e.  om
65a1i 9 . . . . 5  |-  ( q  e.  ( 2o  ^m )  ->  2o  e.  om )
7 omex 4570 . . . . . 6  |-  om  e.  _V
87a1i 9 . . . . 5  |-  ( q  e.  ( 2o  ^m )  ->  om  e.  _V )
96, 8elmapd 6628 . . . 4  |-  ( q  e.  ( 2o  ^m )  -> 
( ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e.  ( 2o  ^m  om )  <->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) : om --> 2o ) )
104, 9mpbird 166 . . 3  |-  ( q  e.  ( 2o  ^m )  -> 
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e.  ( 2o  ^m  om ) )
11 nninfsellemsuc 13902 . . . . 5  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  if ( A. k  e.  suc  suc  j
( q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  if ( A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
12 peano2 4572 . . . . . 6  |-  ( j  e.  om  ->  suc  j  e.  om )
13 nninfsellemcl 13901 . . . . . . 7  |-  ( ( q  e.  ( 2o 
^m )  /\  suc  j  e. 
om )  ->  if ( A. k  e.  suc  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )
1412, 13sylan2 284 . . . . . 6  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  if ( A. k  e.  suc  suc  j
( q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )
15 suceq 4380 . . . . . . . . 9  |-  ( n  =  suc  j  ->  suc  n  =  suc  suc  j )
1615raleqdv 2667 . . . . . . . 8  |-  ( n  =  suc  j  -> 
( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  suc  suc  j (
q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
1716ifbid 3541 . . . . . . 7  |-  ( n  =  suc  j  ->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. k  e. 
suc  suc  j ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
1817, 3fvmptg 5562 . . . . . 6  |-  ( ( suc  j  e.  om  /\  if ( A. k  e.  suc  suc  j (
q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )  ->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  =  if ( A. k  e. 
suc  suc  j ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
1912, 14, 18syl2an2 584 . . . . 5  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  =  if ( A. k  e. 
suc  suc  j ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
20 simpr 109 . . . . . 6  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  j  e.  om )
21 nninfsellemcl 13901 . . . . . 6  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  if ( A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )
22 suceq 4380 . . . . . . . . 9  |-  ( n  =  j  ->  suc  n  =  suc  j )
2322raleqdv 2667 . . . . . . . 8  |-  ( n  =  j  ->  ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
2423ifbid 3541 . . . . . . 7  |-  ( n  =  j  ->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
2524, 3fvmptg 5562 . . . . . 6  |-  ( ( j  e.  om  /\  if ( A. k  e. 
suc  j ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )  ->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j
)  =  if ( A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
2620, 21, 25syl2anc 409 . . . . 5  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j
)  =  if ( A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
2711, 19, 263sstr4d 3187 . . . 4  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  C_  (
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j ) )
2827ralrimiva 2539 . . 3  |-  ( q  e.  ( 2o  ^m )  ->  A. j  e.  om  ( ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `
 suc  j )  C_  ( ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `
 j ) )
29 fveq1 5485 . . . . . 6  |-  ( f  =  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  ->  ( f `  suc  j )  =  ( ( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j ) )
30 fveq1 5485 . . . . . 6  |-  ( f  =  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  ->  ( f `  j )  =  ( ( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j ) )
3129, 30sseq12d 3173 . . . . 5  |-  ( f  =  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  ->  ( ( f `
 suc  j )  C_  ( f `  j
)  <->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  C_  (
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j ) ) )
3231ralbidv 2466 . . . 4  |-  ( f  =  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  ->  ( A. j  e.  om  ( f `  suc  j )  C_  (
f `  j )  <->  A. j  e.  om  (
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  C_  (
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j ) ) )
33 df-nninf 7085 . . . 4  |-  =  { f  e.  ( 2o  ^m  om )  |  A. j  e.  om  ( f `  suc  j )  C_  (
f `  j ) }
3432, 33elrab2 2885 . . 3  |-  ( ( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e.  <->  ( (
n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e.  ( 2o  ^m  om )  /\  A. j  e. 
om  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  C_  (
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j ) ) )
3510, 28, 34sylanbrc 414 . 2  |-  ( q  e.  ( 2o  ^m )  -> 
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e. )
361, 35fmpti 5637 1  |-  E :
( 2o  ^m ) -->
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   _Vcvv 2726    C_ wss 3116   (/)c0 3409   ifcif 3520    |-> cmpt 4043   suc csuc 4343   omcom 4567   -->wf 5184   ` cfv 5188  (class class class)co 5842   1oc1o 6377   2oc2o 6378    ^m cmap 6614  ℕxnninf 7084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1o 6384  df-2o 6385  df-map 6616  df-nninf 7085
This theorem is referenced by:  nninfsellemeq  13904  nninfsellemeqinf  13906  nninfomnilem  13908
  Copyright terms: Public domain W3C validator