| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > nninfself | Unicode version | ||
| Description: Domain and range of the selection function for ℕ∞. (Contributed by Jim Kingdon, 6-Aug-2022.) |
| Ref | Expression |
|---|---|
| nninfsel.e |
|
| Ref | Expression |
|---|---|
| nninfself |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfsel.e |
. 2
| |
| 2 | nninfsellemcl 16150 |
. . . . 5
| |
| 3 | eqid 2207 |
. . . . 5
| |
| 4 | 2, 3 | fmptd 5757 |
. . . 4
|
| 5 | 2onn 6630 |
. . . . . 6
| |
| 6 | 5 | a1i 9 |
. . . . 5
|
| 7 | omex 4659 |
. . . . . 6
| |
| 8 | 7 | a1i 9 |
. . . . 5
|
| 9 | 6, 8 | elmapd 6772 |
. . . 4
|
| 10 | 4, 9 | mpbird 167 |
. . 3
|
| 11 | nninfsellemsuc 16151 |
. . . . 5
| |
| 12 | peano2 4661 |
. . . . . 6
| |
| 13 | nninfsellemcl 16150 |
. . . . . . 7
| |
| 14 | 12, 13 | sylan2 286 |
. . . . . 6
|
| 15 | suceq 4467 |
. . . . . . . . 9
| |
| 16 | 15 | raleqdv 2711 |
. . . . . . . 8
|
| 17 | 16 | ifbid 3601 |
. . . . . . 7
|
| 18 | 17, 3 | fvmptg 5678 |
. . . . . 6
|
| 19 | 12, 14, 18 | syl2an2 594 |
. . . . 5
|
| 20 | simpr 110 |
. . . . . 6
| |
| 21 | nninfsellemcl 16150 |
. . . . . 6
| |
| 22 | suceq 4467 |
. . . . . . . . 9
| |
| 23 | 22 | raleqdv 2711 |
. . . . . . . 8
|
| 24 | 23 | ifbid 3601 |
. . . . . . 7
|
| 25 | 24, 3 | fvmptg 5678 |
. . . . . 6
|
| 26 | 20, 21, 25 | syl2anc 411 |
. . . . 5
|
| 27 | 11, 19, 26 | 3sstr4d 3246 |
. . . 4
|
| 28 | 27 | ralrimiva 2581 |
. . 3
|
| 29 | fveq1 5598 |
. . . . . 6
| |
| 30 | fveq1 5598 |
. . . . . 6
| |
| 31 | 29, 30 | sseq12d 3232 |
. . . . 5
|
| 32 | 31 | ralbidv 2508 |
. . . 4
|
| 33 | df-nninf 7248 |
. . . 4
| |
| 34 | 32, 33 | elrab2 2939 |
. . 3
|
| 35 | 10, 28, 34 | sylanbrc 417 |
. 2
|
| 36 | 1, 35 | fmpti 5755 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1o 6525 df-2o 6526 df-map 6760 df-nninf 7248 |
| This theorem is referenced by: nninfsellemeq 16153 nninfsellemeqinf 16155 nninfomnilem 16157 |
| Copyright terms: Public domain | W3C validator |