Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninfself Unicode version

Theorem nninfself 14418
Description: Domain and range of the selection function for ℕ. (Contributed by Jim Kingdon, 6-Aug-2022.)
Hypothesis
Ref Expression
nninfsel.e  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
Assertion
Ref Expression
nninfself  |-  E :
( 2o  ^m ) -->
Distinct variable groups:    i, k, n   
k, q, n
Allowed substitution hints:    E( i, k, n, q)

Proof of Theorem nninfself
Dummy variables  f  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfsel.e . 2  |-  E  =  ( q  e.  ( 2o  ^m )  |->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) )
2 nninfsellemcl 14416 . . . . 5  |-  ( ( q  e.  ( 2o 
^m )  /\  n  e.  om )  ->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )
3 eqid 2177 . . . . 5  |-  ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  =  ( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
42, 3fmptd 5666 . . . 4  |-  ( q  e.  ( 2o  ^m )  -> 
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) : om --> 2o )
5 2onn 6516 . . . . . 6  |-  2o  e.  om
65a1i 9 . . . . 5  |-  ( q  e.  ( 2o  ^m )  ->  2o  e.  om )
7 omex 4589 . . . . . 6  |-  om  e.  _V
87a1i 9 . . . . 5  |-  ( q  e.  ( 2o  ^m )  ->  om  e.  _V )
96, 8elmapd 6656 . . . 4  |-  ( q  e.  ( 2o  ^m )  -> 
( ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e.  ( 2o  ^m  om )  <->  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) : om --> 2o ) )
104, 9mpbird 167 . . 3  |-  ( q  e.  ( 2o  ^m )  -> 
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e.  ( 2o  ^m  om ) )
11 nninfsellemsuc 14417 . . . . 5  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  if ( A. k  e.  suc  suc  j
( q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  C_  if ( A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
12 peano2 4591 . . . . . 6  |-  ( j  e.  om  ->  suc  j  e.  om )
13 nninfsellemcl 14416 . . . . . . 7  |-  ( ( q  e.  ( 2o 
^m )  /\  suc  j  e. 
om )  ->  if ( A. k  e.  suc  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )
1412, 13sylan2 286 . . . . . 6  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  if ( A. k  e.  suc  suc  j
( q `  (
i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )
15 suceq 4399 . . . . . . . . 9  |-  ( n  =  suc  j  ->  suc  n  =  suc  suc  j )
1615raleqdv 2678 . . . . . . . 8  |-  ( n  =  suc  j  -> 
( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  suc  suc  j (
q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
1716ifbid 3555 . . . . . . 7  |-  ( n  =  suc  j  ->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. k  e. 
suc  suc  j ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
1817, 3fvmptg 5588 . . . . . 6  |-  ( ( suc  j  e.  om  /\  if ( A. k  e.  suc  suc  j (
q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )  ->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  =  if ( A. k  e. 
suc  suc  j ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
1912, 14, 18syl2an2 594 . . . . 5  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  =  if ( A. k  e. 
suc  suc  j ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
20 simpr 110 . . . . . 6  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  j  e.  om )
21 nninfsellemcl 14416 . . . . . 6  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  if ( A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )
22 suceq 4399 . . . . . . . . 9  |-  ( n  =  j  ->  suc  n  =  suc  j )
2322raleqdv 2678 . . . . . . . 8  |-  ( n  =  j  ->  ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o  <->  A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ) )
2423ifbid 3555 . . . . . . 7  |-  ( n  =  j  ->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  =  if ( A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
2524, 3fvmptg 5588 . . . . . 6  |-  ( ( j  e.  om  /\  if ( A. k  e. 
suc  j ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) )  e.  2o )  ->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j
)  =  if ( A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
2620, 21, 25syl2anc 411 . . . . 5  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j
)  =  if ( A. k  e.  suc  j ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )
2711, 19, 263sstr4d 3200 . . . 4  |-  ( ( q  e.  ( 2o 
^m )  /\  j  e.  om )  ->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  C_  (
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j ) )
2827ralrimiva 2550 . . 3  |-  ( q  e.  ( 2o  ^m )  ->  A. j  e.  om  ( ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `
 suc  j )  C_  ( ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `
 j ) )
29 fveq1 5510 . . . . . 6  |-  ( f  =  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  ->  ( f `  suc  j )  =  ( ( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j ) )
30 fveq1 5510 . . . . . 6  |-  ( f  =  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  ->  ( f `  j )  =  ( ( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j ) )
3129, 30sseq12d 3186 . . . . 5  |-  ( f  =  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  ->  ( ( f `
 suc  j )  C_  ( f `  j
)  <->  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  C_  (
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j ) ) )
3231ralbidv 2477 . . . 4  |-  ( f  =  ( n  e. 
om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  ->  ( A. j  e.  om  ( f `  suc  j )  C_  (
f `  j )  <->  A. j  e.  om  (
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  C_  (
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j ) ) )
33 df-nninf 7113 . . . 4  |-  =  { f  e.  ( 2o  ^m  om )  |  A. j  e.  om  ( f `  suc  j )  C_  (
f `  j ) }
3432, 33elrab2 2896 . . 3  |-  ( ( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e.  <->  ( (
n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e.  ( 2o  ^m  om )  /\  A. j  e. 
om  ( ( n  e.  om  |->  if ( A. k  e.  suc  n ( q `  ( i  e.  om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  suc  j )  C_  (
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) ) `  j ) ) )
3510, 28, 34sylanbrc 417 . 2  |-  ( q  e.  ( 2o  ^m )  -> 
( n  e.  om  |->  if ( A. k  e. 
suc  n ( q `
 ( i  e. 
om  |->  if ( i  e.  k ,  1o ,  (/) ) ) )  =  1o ,  1o ,  (/) ) )  e. )
361, 35fmpti 5664 1  |-  E :
( 2o  ^m ) -->
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2737    C_ wss 3129   (/)c0 3422   ifcif 3534    |-> cmpt 4061   suc csuc 4362   omcom 4586   -->wf 5208   ` cfv 5212  (class class class)co 5869   1oc1o 6404   2oc2o 6405    ^m cmap 6642  ℕxnninf 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1o 6411  df-2o 6412  df-map 6644  df-nninf 7113
This theorem is referenced by:  nninfsellemeq  14419  nninfsellemeqinf  14421  nninfomnilem  14423
  Copyright terms: Public domain W3C validator