Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nnsf Unicode version

Theorem nnsf 14410
Description: Domain and range of  S. Part of Definition 3.3 of [PradicBrown2022], p. 5. (Contributed by Jim Kingdon, 30-Jul-2022.)
Hypothesis
Ref Expression
nns.s  |-  S  =  ( p  e. 
|->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) )
Assertion
Ref Expression
nnsf  |-  S : -->
Distinct variable group:    i, p
Allowed substitution hints:    S( i, p)

Proof of Theorem nnsf
Dummy variables  f  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nns.s . 2  |-  S  =  ( p  e. 
|->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) )
2 1lt2o 6437 . . . . . . 7  |-  1o  e.  2o
32a1i 9 . . . . . 6  |-  ( ( p  e.  /\  i  e.  om )  ->  1o  e.  2o )
4 nninff 7115 . . . . . . . 8  |-  ( p  e.  ->  p : om --> 2o )
54adantr 276 . . . . . . 7  |-  ( ( p  e.  /\  i  e.  om )  ->  p : om --> 2o )
6 nnpredcl 4619 . . . . . . . 8  |-  ( i  e.  om  ->  U. i  e.  om )
76adantl 277 . . . . . . 7  |-  ( ( p  e.  /\  i  e.  om )  ->  U. i  e.  om )
85, 7ffvelcdmd 5648 . . . . . 6  |-  ( ( p  e.  /\  i  e.  om )  ->  ( p `  U. i )  e.  2o )
9 nndceq0 4614 . . . . . . 7  |-  ( i  e.  om  -> DECID  i  =  (/) )
109adantl 277 . . . . . 6  |-  ( ( p  e.  /\  i  e.  om )  -> DECID 
i  =  (/) )
113, 8, 10ifcldcd 3569 . . . . 5  |-  ( ( p  e.  /\  i  e.  om )  ->  if ( i  =  (/) ,  1o , 
( p `  U. i ) )  e.  2o )
12 eqid 2177 . . . . 5  |-  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `  U. i ) ) )  =  ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( p `  U. i ) ) )
1311, 12fmptd 5666 . . . 4  |-  ( p  e.  ->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) : om --> 2o )
14 2onn 6516 . . . . 5  |-  2o  e.  om
15 omex 4589 . . . . 5  |-  om  e.  _V
16 elmapg 6655 . . . . 5  |-  ( ( 2o  e.  om  /\  om  e.  _V )  -> 
( ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( p `  U. i ) ) )  e.  ( 2o  ^m  om )  <->  ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( p `  U. i ) ) ) : om --> 2o ) )
1714, 15, 16mp2an 426 . . . 4  |-  ( ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) )  e.  ( 2o  ^m  om )  <->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) : om --> 2o )
1813, 17sylibr 134 . . 3  |-  ( p  e.  ->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) )  e.  ( 2o  ^m  om )
)
19 1on 6418 . . . . . . . . 9  |-  1o  e.  On
2019ontrci 4424 . . . . . . . 8  |-  Tr  1o
212a1i 9 . . . . . . . . . . 11  |-  ( ( p  e.  /\  j  e.  om )  ->  1o  e.  2o )
224adantr 276 . . . . . . . . . . . 12  |-  ( ( p  e.  /\  j  e.  om )  ->  p : om --> 2o )
23 peano2 4591 . . . . . . . . . . . . . 14  |-  ( j  e.  om  ->  suc  j  e.  om )
2423adantl 277 . . . . . . . . . . . . 13  |-  ( ( p  e.  /\  j  e.  om )  ->  suc  j  e.  om )
25 nnpredcl 4619 . . . . . . . . . . . . 13  |-  ( suc  j  e.  om  ->  U.
suc  j  e.  om )
2624, 25syl 14 . . . . . . . . . . . 12  |-  ( ( p  e.  /\  j  e.  om )  ->  U. suc  j  e. 
om )
2722, 26ffvelcdmd 5648 . . . . . . . . . . 11  |-  ( ( p  e.  /\  j  e.  om )  ->  ( p `  U. suc  j )  e.  2o )
28 nndceq0 4614 . . . . . . . . . . . 12  |-  ( suc  j  e.  om  -> DECID  suc  j  =  (/) )
2924, 28syl 14 . . . . . . . . . . 11  |-  ( ( p  e.  /\  j  e.  om )  -> DECID  suc  j  =  (/) )
3021, 27, 29ifcldcd 3569 . . . . . . . . . 10  |-  ( ( p  e.  /\  j  e.  om )  ->  if ( suc  j  =  (/) ,  1o ,  ( p `  U. suc  j ) )  e.  2o )
3130adantr 276 . . . . . . . . 9  |-  ( ( ( p  e.  /\  j  e.  om )  /\  j  =  (/) )  ->  if ( suc  j  =  (/) ,  1o ,  ( p `  U. suc  j ) )  e.  2o )
32 df-2o 6412 . . . . . . . . 9  |-  2o  =  suc  1o
3331, 32eleqtrdi 2270 . . . . . . . 8  |-  ( ( ( p  e.  /\  j  e.  om )  /\  j  =  (/) )  ->  if ( suc  j  =  (/) ,  1o ,  ( p `  U. suc  j ) )  e.  suc  1o )
34 trsucss 4420 . . . . . . . 8  |-  ( Tr  1o  ->  ( if ( suc  j  =  (/) ,  1o ,  ( p `
 U. suc  j
) )  e.  suc  1o 
->  if ( suc  j  =  (/) ,  1o , 
( p `  U. suc  j ) )  C_  1o ) )
3520, 33, 34mpsyl 65 . . . . . . 7  |-  ( ( ( p  e.  /\  j  e.  om )  /\  j  =  (/) )  ->  if ( suc  j  =  (/) ,  1o ,  ( p `  U. suc  j ) ) 
C_  1o )
36 iftrue 3539 . . . . . . . 8  |-  ( j  =  (/)  ->  if ( j  =  (/) ,  1o ,  ( p `  U. j ) )  =  1o )
3736adantl 277 . . . . . . 7  |-  ( ( ( p  e.  /\  j  e.  om )  /\  j  =  (/) )  ->  if ( j  =  (/) ,  1o , 
( p `  U. j ) )  =  1o )
3835, 37sseqtrrd 3194 . . . . . 6  |-  ( ( ( p  e.  /\  j  e.  om )  /\  j  =  (/) )  ->  if ( suc  j  =  (/) ,  1o ,  ( p `  U. suc  j ) ) 
C_  if ( j  =  (/) ,  1o , 
( p `  U. j ) ) )
39 simpr 110 . . . . . . . . . . . 12  |-  ( ( p  e.  /\  j  e.  om )  ->  j  e.  om )
4039adantr 276 . . . . . . . . . . 11  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  j  e. 
om )
41 nnord 4608 . . . . . . . . . . 11  |-  ( j  e.  om  ->  Ord  j )
42 ordtr 4375 . . . . . . . . . . 11  |-  ( Ord  j  ->  Tr  j
)
4340, 41, 423syl 17 . . . . . . . . . 10  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  Tr  j
)
44 unisucg 4411 . . . . . . . . . . 11  |-  ( j  e.  om  ->  ( Tr  j  <->  U. suc  j  =  j ) )
4540, 44syl 14 . . . . . . . . . 10  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  ( Tr  j  <->  U. suc  j  =  j ) )
4643, 45mpbid 147 . . . . . . . . 9  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  U. suc  j  =  j )
4746fveq2d 5515 . . . . . . . 8  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  ( p `
 U. suc  j
)  =  ( p `
 j ) )
48 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  -.  j  =  (/) )
4948neqned 2354 . . . . . . . . . . 11  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  j  =/=  (/) )
50 nnsucpred 4613 . . . . . . . . . . 11  |-  ( ( j  e.  om  /\  j  =/=  (/) )  ->  suc  U. j  =  j )
5140, 49, 50syl2anc 411 . . . . . . . . . 10  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  suc  U. j  =  j )
5251fveq2d 5515 . . . . . . . . 9  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  ( p `
 suc  U. j
)  =  ( p `
 j ) )
53 suceq 4399 . . . . . . . . . . . 12  |-  ( k  =  U. j  ->  suc  k  =  suc  U. j )
5453fveq2d 5515 . . . . . . . . . . 11  |-  ( k  =  U. j  -> 
( p `  suc  k )  =  ( p `  suc  U. j ) )
55 fveq2 5511 . . . . . . . . . . 11  |-  ( k  =  U. j  -> 
( p `  k
)  =  ( p `
 U. j ) )
5654, 55sseq12d 3186 . . . . . . . . . 10  |-  ( k  =  U. j  -> 
( ( p `  suc  k )  C_  (
p `  k )  <->  ( p `  suc  U. j )  C_  (
p `  U. j ) ) )
57 fveq1 5510 . . . . . . . . . . . . . . . 16  |-  ( f  =  p  ->  (
f `  suc  j )  =  ( p `  suc  j ) )
58 fveq1 5510 . . . . . . . . . . . . . . . 16  |-  ( f  =  p  ->  (
f `  j )  =  ( p `  j ) )
5957, 58sseq12d 3186 . . . . . . . . . . . . . . 15  |-  ( f  =  p  ->  (
( f `  suc  j )  C_  (
f `  j )  <->  ( p `  suc  j
)  C_  ( p `  j ) ) )
6059ralbidv 2477 . . . . . . . . . . . . . 14  |-  ( f  =  p  ->  ( A. j  e.  om  ( f `  suc  j )  C_  (
f `  j )  <->  A. j  e.  om  (
p `  suc  j ) 
C_  ( p `  j ) ) )
61 df-nninf 7113 . . . . . . . . . . . . . 14  |-  =  { f  e.  ( 2o  ^m  om )  |  A. j  e.  om  ( f `  suc  j )  C_  (
f `  j ) }
6260, 61elrab2 2896 . . . . . . . . . . . . 13  |-  ( p  e.  <->  ( p  e.  ( 2o 
^m  om )  /\  A. j  e.  om  (
p `  suc  j ) 
C_  ( p `  j ) ) )
6362simprbi 275 . . . . . . . . . . . 12  |-  ( p  e.  ->  A. j  e.  om  ( p `  suc  j )  C_  (
p `  j )
)
64 suceq 4399 . . . . . . . . . . . . . . 15  |-  ( j  =  k  ->  suc  j  =  suc  k )
6564fveq2d 5515 . . . . . . . . . . . . . 14  |-  ( j  =  k  ->  (
p `  suc  j )  =  ( p `  suc  k ) )
66 fveq2 5511 . . . . . . . . . . . . . 14  |-  ( j  =  k  ->  (
p `  j )  =  ( p `  k ) )
6765, 66sseq12d 3186 . . . . . . . . . . . . 13  |-  ( j  =  k  ->  (
( p `  suc  j )  C_  (
p `  j )  <->  ( p `  suc  k
)  C_  ( p `  k ) ) )
6867cbvralv 2703 . . . . . . . . . . . 12  |-  ( A. j  e.  om  (
p `  suc  j ) 
C_  ( p `  j )  <->  A. k  e.  om  ( p `  suc  k )  C_  (
p `  k )
)
6963, 68sylib 122 . . . . . . . . . . 11  |-  ( p  e.  ->  A. k  e.  om  ( p `  suc  k )  C_  (
p `  k )
)
7069ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  A. k  e.  om  ( p `  suc  k )  C_  (
p `  k )
)
71 nnpredcl 4619 . . . . . . . . . . . 12  |-  ( j  e.  om  ->  U. j  e.  om )
7271adantl 277 . . . . . . . . . . 11  |-  ( ( p  e.  /\  j  e.  om )  ->  U. j  e.  om )
7372adantr 276 . . . . . . . . . 10  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  U. j  e.  om )
7456, 70, 73rspcdva 2846 . . . . . . . . 9  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  ( p `
 suc  U. j
)  C_  ( p `  U. j ) )
7552, 74eqsstrrd 3192 . . . . . . . 8  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  ( p `
 j )  C_  ( p `  U. j ) )
7647, 75eqsstrd 3191 . . . . . . 7  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  ( p `
 U. suc  j
)  C_  ( p `  U. j ) )
77 peano3 4592 . . . . . . . . . 10  |-  ( j  e.  om  ->  suc  j  =/=  (/) )
7877neneqd 2368 . . . . . . . . 9  |-  ( j  e.  om  ->  -.  suc  j  =  (/) )
7978ad2antlr 489 . . . . . . . 8  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  -.  suc  j  =  (/) )
8079iffalsed 3544 . . . . . . 7  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  if ( suc  j  =  (/) ,  1o ,  ( p `
 U. suc  j
) )  =  ( p `  U. suc  j ) )
8148iffalsed 3544 . . . . . . 7  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  if ( j  =  (/) ,  1o ,  ( p `  U. j ) )  =  ( p `  U. j ) )
8276, 80, 813sstr4d 3200 . . . . . 6  |-  ( ( ( p  e.  /\  j  e.  om )  /\  -.  j  =  (/) )  ->  if ( suc  j  =  (/) ,  1o ,  ( p `
 U. suc  j
) )  C_  if ( j  =  (/) ,  1o ,  ( p `
 U. j ) ) )
83 nndceq0 4614 . . . . . . . 8  |-  ( j  e.  om  -> DECID  j  =  (/) )
8483adantl 277 . . . . . . 7  |-  ( ( p  e.  /\  j  e.  om )  -> DECID 
j  =  (/) )
85 exmiddc 836 . . . . . . 7  |-  (DECID  j  =  (/)  ->  ( j  =  (/)  \/  -.  j  =  (/) ) )
8684, 85syl 14 . . . . . 6  |-  ( ( p  e.  /\  j  e.  om )  ->  ( j  =  (/)  \/  -.  j  =  (/) ) )
8738, 82, 86mpjaodan 798 . . . . 5  |-  ( ( p  e.  /\  j  e.  om )  ->  if ( suc  j  =  (/) ,  1o ,  ( p `  U. suc  j ) ) 
C_  if ( j  =  (/) ,  1o , 
( p `  U. j ) ) )
88 eqeq1 2184 . . . . . . . 8  |-  ( i  =  suc  j  -> 
( i  =  (/)  <->  suc  j  =  (/) ) )
89 unieq 3816 . . . . . . . . 9  |-  ( i  =  suc  j  ->  U. i  =  U. suc  j )
9089fveq2d 5515 . . . . . . . 8  |-  ( i  =  suc  j  -> 
( p `  U. i )  =  ( p `  U. suc  j ) )
9188, 90ifbieq2d 3558 . . . . . . 7  |-  ( i  =  suc  j  ->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) )  =  if ( suc  j  =  (/) ,  1o ,  ( p `
 U. suc  j
) ) )
9291, 12fvmptg 5588 . . . . . 6  |-  ( ( suc  j  e.  om  /\  if ( suc  j  =  (/) ,  1o , 
( p `  U. suc  j ) )  e.  2o )  ->  (
( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) `  suc  j )  =  if ( suc  j  =  (/) ,  1o ,  ( p `  U. suc  j ) ) )
9324, 30, 92syl2anc 411 . . . . 5  |-  ( ( p  e.  /\  j  e.  om )  ->  ( ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `  U. i ) ) ) `
 suc  j )  =  if ( suc  j  =  (/) ,  1o , 
( p `  U. suc  j ) ) )
9422, 72ffvelcdmd 5648 . . . . . . 7  |-  ( ( p  e.  /\  j  e.  om )  ->  ( p `  U. j )  e.  2o )
9521, 94, 84ifcldcd 3569 . . . . . 6  |-  ( ( p  e.  /\  j  e.  om )  ->  if ( j  =  (/) ,  1o , 
( p `  U. j ) )  e.  2o )
96 eqeq1 2184 . . . . . . . 8  |-  ( i  =  j  ->  (
i  =  (/)  <->  j  =  (/) ) )
97 unieq 3816 . . . . . . . . 9  |-  ( i  =  j  ->  U. i  =  U. j )
9897fveq2d 5515 . . . . . . . 8  |-  ( i  =  j  ->  (
p `  U. i )  =  ( p `  U. j ) )
9996, 98ifbieq2d 3558 . . . . . . 7  |-  ( i  =  j  ->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) )  =  if ( j  =  (/) ,  1o ,  ( p `  U. j ) ) )
10099, 12fvmptg 5588 . . . . . 6  |-  ( ( j  e.  om  /\  if ( j  =  (/) ,  1o ,  ( p `
 U. j ) )  e.  2o )  ->  ( ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `  U. i ) ) ) `
 j )  =  if ( j  =  (/) ,  1o ,  ( p `  U. j
) ) )
10139, 95, 100syl2anc 411 . . . . 5  |-  ( ( p  e.  /\  j  e.  om )  ->  ( ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `  U. i ) ) ) `
 j )  =  if ( j  =  (/) ,  1o ,  ( p `  U. j
) ) )
10287, 93, 1013sstr4d 3200 . . . 4  |-  ( ( p  e.  /\  j  e.  om )  ->  ( ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `  U. i ) ) ) `
 suc  j )  C_  ( ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( p `  U. i ) ) ) `
 j ) )
103102ralrimiva 2550 . . 3  |-  ( p  e.  ->  A. j  e.  om  ( ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( p `  U. i ) ) ) `
 suc  j )  C_  ( ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( p `  U. i ) ) ) `
 j ) )
104 fveq1 5510 . . . . . 6  |-  ( f  =  ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( p `  U. i ) ) )  ->  ( f `  suc  j )  =  ( ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) `  suc  j ) )
105 fveq1 5510 . . . . . 6  |-  ( f  =  ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( p `  U. i ) ) )  ->  ( f `  j )  =  ( ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) `  j
) )
106104, 105sseq12d 3186 . . . . 5  |-  ( f  =  ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( p `  U. i ) ) )  ->  ( ( f `
 suc  j )  C_  ( f `  j
)  <->  ( ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `  U. i ) ) ) `
 suc  j )  C_  ( ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( p `  U. i ) ) ) `
 j ) ) )
107106ralbidv 2477 . . . 4  |-  ( f  =  ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( p `  U. i ) ) )  ->  ( A. j  e.  om  ( f `  suc  j )  C_  (
f `  j )  <->  A. j  e.  om  (
( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) `  suc  j )  C_  (
( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) ) `  j
) ) )
108107, 61elrab2 2896 . . 3  |-  ( ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) )  e.  <-> 
( ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( p `  U. i ) ) )  e.  ( 2o  ^m  om )  /\  A. j  e.  om  ( ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `  U. i ) ) ) `
 suc  j )  C_  ( ( i  e. 
om  |->  if ( i  =  (/) ,  1o , 
( p `  U. i ) ) ) `
 j ) ) )
10918, 103, 108sylanbrc 417 . 2  |-  ( p  e.  ->  ( i  e.  om  |->  if ( i  =  (/) ,  1o ,  ( p `
 U. i ) ) )  e. )
1101, 109fmpti 5664 1  |-  S : -->
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   _Vcvv 2737    C_ wss 3129   (/)c0 3422   ifcif 3534   U.cuni 3807    |-> cmpt 4061   Tr wtr 4098   Ord word 4359   suc csuc 4362   omcom 4586   -->wf 5208   ` cfv 5212  (class class class)co 5869   1oc1o 6404   2oc2o 6405    ^m cmap 6642  ℕxnninf 7112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1o 6411  df-2o 6412  df-map 6644  df-nninf 7113
This theorem is referenced by:  peano4nninf  14411
  Copyright terms: Public domain W3C validator