Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df2o3 | Unicode version |
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
df2o3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 6408 | . 2 | |
2 | df-suc 4365 | . 2 | |
3 | df1o2 6420 | . . . 4 | |
4 | 3 | uneq1i 3283 | . . 3 |
5 | df-pr 3596 | . . 3 | |
6 | 4, 5 | eqtr4i 2199 | . 2 |
7 | 1, 2, 6 | 3eqtri 2200 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1353 cun 3125 c0 3420 csn 3589 cpr 3590 csuc 4359 c1o 6400 c2o 6401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-dif 3129 df-un 3131 df-nul 3421 df-pr 3596 df-suc 4365 df-1o 6407 df-2o 6408 |
This theorem is referenced by: df2o2 6422 2oconcl 6430 0lt2o 6432 1lt2o 6433 el2oss1o 6434 en2eqpr 6897 nninfisol 7121 finomni 7128 exmidomniim 7129 exmidomni 7130 ismkvnex 7143 nninfwlpoimlemginf 7164 exmidfodomrlemr 7191 exmidfodomrlemrALT 7192 xp2dju 7204 pw1nel3 7220 sucpw1nel3 7222 unct 12408 2o01f 14286 nninfalllem1 14298 nninfall 14299 nninfsellemqall 14305 nninfomnilem 14308 |
Copyright terms: Public domain | W3C validator |