Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df2o3 | Unicode version |
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
df2o3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 6396 | . 2 | |
2 | df-suc 4356 | . 2 | |
3 | df1o2 6408 | . . . 4 | |
4 | 3 | uneq1i 3277 | . . 3 |
5 | df-pr 3590 | . . 3 | |
6 | 4, 5 | eqtr4i 2194 | . 2 |
7 | 1, 2, 6 | 3eqtri 2195 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 cun 3119 c0 3414 csn 3583 cpr 3584 csuc 4350 c1o 6388 c2o 6389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-un 3125 df-nul 3415 df-pr 3590 df-suc 4356 df-1o 6395 df-2o 6396 |
This theorem is referenced by: df2o2 6410 2oconcl 6418 0lt2o 6420 1lt2o 6421 el2oss1o 6422 en2eqpr 6885 nninfisol 7109 finomni 7116 exmidomniim 7117 exmidomni 7118 ismkvnex 7131 nninfwlpoimlemginf 7152 exmidfodomrlemr 7179 exmidfodomrlemrALT 7180 xp2dju 7192 pw1nel3 7208 sucpw1nel3 7210 unct 12397 2o01f 14029 nninfalllem1 14041 nninfall 14042 nninfsellemqall 14048 nninfomnilem 14051 |
Copyright terms: Public domain | W3C validator |