| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df2o3 | Unicode version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2o3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6505 |
. 2
| |
| 2 | df-suc 4419 |
. 2
| |
| 3 | df1o2 6517 |
. . . 4
| |
| 4 | 3 | uneq1i 3323 |
. . 3
|
| 5 | df-pr 3640 |
. . 3
| |
| 6 | 4, 5 | eqtr4i 2229 |
. 2
|
| 7 | 1, 2, 6 | 3eqtri 2230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-un 3170 df-nul 3461 df-pr 3640 df-suc 4419 df-1o 6504 df-2o 6505 |
| This theorem is referenced by: df2o2 6519 2oconcl 6527 0lt2o 6529 1lt2o 6530 el2oss1o 6531 rex2dom 6912 en2 6914 en2eqpr 7006 nninfisol 7237 finomni 7244 exmidomniim 7245 exmidomni 7246 ismkvnex 7259 nninfwlpoimlemginf 7280 exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 xp2dju 7329 pw1nel3 7345 sucpw1nel3 7347 nninfctlemfo 12394 unct 12846 fnpr2o 13204 fnpr2ob 13205 fvprif 13208 xpsfrnel 13209 xpsfeq 13210 2o01f 15968 2omap 15969 nninfalllem1 15982 nninfall 15983 nninfsellemqall 15989 nninfomnilem 15992 nnnninfex 15996 nninfnfiinf 15997 |
| Copyright terms: Public domain | W3C validator |