| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df2o3 | Unicode version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2o3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6563 |
. 2
| |
| 2 | df-suc 4462 |
. 2
| |
| 3 | df1o2 6575 |
. . . 4
| |
| 4 | 3 | uneq1i 3354 |
. . 3
|
| 5 | df-pr 3673 |
. . 3
| |
| 6 | 4, 5 | eqtr4i 2253 |
. 2
|
| 7 | 1, 2, 6 | 3eqtri 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-pr 3673 df-suc 4462 df-1o 6562 df-2o 6563 |
| This theorem is referenced by: df2o2 6577 2oconcl 6585 0lt2o 6587 1lt2o 6588 el2oss1o 6589 rex2dom 6971 en2 6973 en2eqpr 7069 nninfisol 7300 finomni 7307 exmidomniim 7308 exmidomni 7309 ismkvnex 7322 nninfwlpoimlemginf 7343 pr2cv1 7368 exmidfodomrlemr 7380 exmidfodomrlemrALT 7381 xp2dju 7397 pw1nel3 7416 sucpw1nel3 7418 nninfctlemfo 12561 unct 13013 fnpr2o 13372 fnpr2ob 13373 fvprif 13376 xpsfrnel 13377 xpsfeq 13378 2o01f 16358 2omap 16359 nninfalllem1 16374 nninfall 16375 nninfsellemqall 16381 nninfomnilem 16384 nnnninfex 16388 nninfnfiinf 16389 |
| Copyright terms: Public domain | W3C validator |