ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df2o3 Unicode version

Theorem df2o3 6488
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
df2o3  |-  2o  =  { (/) ,  1o }

Proof of Theorem df2o3
StepHypRef Expression
1 df-2o 6475 . 2  |-  2o  =  suc  1o
2 df-suc 4406 . 2  |-  suc  1o  =  ( 1o  u.  { 1o } )
3 df1o2 6487 . . . 4  |-  1o  =  { (/) }
43uneq1i 3313 . . 3  |-  ( 1o  u.  { 1o }
)  =  ( {
(/) }  u.  { 1o } )
5 df-pr 3629 . . 3  |-  { (/) ,  1o }  =  ( { (/) }  u.  { 1o } )
64, 5eqtr4i 2220 . 2  |-  ( 1o  u.  { 1o }
)  =  { (/) ,  1o }
71, 2, 63eqtri 2221 1  |-  2o  =  { (/) ,  1o }
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3155   (/)c0 3450   {csn 3622   {cpr 3623   suc csuc 4400   1oc1o 6467   2oc2o 6468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451  df-pr 3629  df-suc 4406  df-1o 6474  df-2o 6475
This theorem is referenced by:  df2o2  6489  2oconcl  6497  0lt2o  6499  1lt2o  6500  el2oss1o  6501  en2eqpr  6968  nninfisol  7199  finomni  7206  exmidomniim  7207  exmidomni  7208  ismkvnex  7221  nninfwlpoimlemginf  7242  exmidfodomrlemr  7269  exmidfodomrlemrALT  7270  xp2dju  7282  pw1nel3  7298  sucpw1nel3  7300  nninfctlemfo  12207  unct  12659  fnpr2o  12982  fnpr2ob  12983  fvprif  12986  xpsfrnel  12987  xpsfeq  12988  2o01f  15641  nninfalllem1  15652  nninfall  15653  nninfsellemqall  15659  nninfomnilem  15662
  Copyright terms: Public domain W3C validator