![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df2o3 | Unicode version |
Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
Ref | Expression |
---|---|
df2o3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o 6244 |
. 2
![]() ![]() ![]() ![]() ![]() | |
2 | df-suc 4231 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | df1o2 6256 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | uneq1i 3173 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | df-pr 3481 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | eqtr4i 2123 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 2, 6 | 3eqtri 2124 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-dif 3023 df-un 3025 df-nul 3311 df-pr 3481 df-suc 4231 df-1o 6243 df-2o 6244 |
This theorem is referenced by: df2o2 6258 2oconcl 6266 0lt2o 6268 1lt2o 6269 en2eqpr 6730 finomni 6924 exmidomniim 6925 exmidomni 6926 exmidfodomrlemr 6967 exmidfodomrlemrALT 6968 xp2dju 6975 el2oss1o 12773 nninfalllem1 12787 nninfall 12788 nninfsellemqall 12795 nninfomnilem 12798 isomninnlem 12809 |
Copyright terms: Public domain | W3C validator |