| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df2o3 | Unicode version | ||
| Description: Expanded value of the ordinal number 2. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| df2o3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2o 6484 |
. 2
| |
| 2 | df-suc 4407 |
. 2
| |
| 3 | df1o2 6496 |
. . . 4
| |
| 4 | 3 | uneq1i 3314 |
. . 3
|
| 5 | df-pr 3630 |
. . 3
| |
| 6 | 4, 5 | eqtr4i 2220 |
. 2
|
| 7 | 1, 2, 6 | 3eqtri 2221 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-nul 3452 df-pr 3630 df-suc 4407 df-1o 6483 df-2o 6484 |
| This theorem is referenced by: df2o2 6498 2oconcl 6506 0lt2o 6508 1lt2o 6509 el2oss1o 6510 en2eqpr 6977 nninfisol 7208 finomni 7215 exmidomniim 7216 exmidomni 7217 ismkvnex 7230 nninfwlpoimlemginf 7251 exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 xp2dju 7298 pw1nel3 7314 sucpw1nel3 7316 nninfctlemfo 12232 unct 12684 fnpr2o 13041 fnpr2ob 13042 fvprif 13045 xpsfrnel 13046 xpsfeq 13047 2o01f 15725 2omap 15726 nninfalllem1 15739 nninfall 15740 nninfsellemqall 15746 nninfomnilem 15749 |
| Copyright terms: Public domain | W3C validator |