ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninff Unicode version

Theorem nninff 7087
Description: An element of ℕ is a sequence of zeroes and ones. (Contributed by Jim Kingdon, 4-Aug-2022.)
Assertion
Ref Expression
nninff  |-  ( A  e.  ->  A : om --> 2o )

Proof of Theorem nninff
Dummy variables  f  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5485 . . . . . 6  |-  ( f  =  A  ->  (
f `  suc  i )  =  ( A `  suc  i ) )
2 fveq1 5485 . . . . . 6  |-  ( f  =  A  ->  (
f `  i )  =  ( A `  i ) )
31, 2sseq12d 3173 . . . . 5  |-  ( f  =  A  ->  (
( f `  suc  i )  C_  (
f `  i )  <->  ( A `  suc  i
)  C_  ( A `  i ) ) )
43ralbidv 2466 . . . 4  |-  ( f  =  A  ->  ( A. i  e.  om  ( f `  suc  i )  C_  (
f `  i )  <->  A. i  e.  om  ( A `  suc  i ) 
C_  ( A `  i ) ) )
5 df-nninf 7085 . . . 4  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
64, 5elrab2 2885 . . 3  |-  ( A  e.  <->  ( A  e.  ( 2o 
^m  om )  /\  A. i  e.  om  ( A `  suc  i ) 
C_  ( A `  i ) ) )
76simplbi 272 . 2  |-  ( A  e.  ->  A  e.  ( 2o 
^m  om ) )
8 elmapi 6636 . 2  |-  ( A  e.  ( 2o  ^m  om )  ->  A : om
--> 2o )
97, 8syl 14 1  |-  ( A  e.  ->  A : om --> 2o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   A.wral 2444    C_ wss 3116   suc csuc 4343   omcom 4567   -->wf 5184   ` cfv 5188  (class class class)co 5842   2oc2o 6378    ^m cmap 6614  ℕxnninf 7084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-map 6616  df-nninf 7085
This theorem is referenced by:  nnnninfeq  7092  nnnninfeq2  7093  nninfisol  7097  nnsf  13895  peano4nninf  13896  nninfall  13899  nninfsellemeqinf  13906
  Copyright terms: Public domain W3C validator