Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nninff | Unicode version |
Description: An element of ℕ∞ is a sequence of zeroes and ones. (Contributed by Jim Kingdon, 4-Aug-2022.) |
Ref | Expression |
---|---|
nninff | ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 5495 | . . . . . 6 | |
2 | fveq1 5495 | . . . . . 6 | |
3 | 1, 2 | sseq12d 3178 | . . . . 5 |
4 | 3 | ralbidv 2470 | . . . 4 |
5 | df-nninf 7097 | . . . 4 ℕ∞ | |
6 | 4, 5 | elrab2 2889 | . . 3 ℕ∞ |
7 | 6 | simplbi 272 | . 2 ℕ∞ |
8 | elmapi 6648 | . 2 | |
9 | 7, 8 | syl 14 | 1 ℕ∞ |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 wral 2448 wss 3121 csuc 4350 com 4574 wf 5194 cfv 5198 (class class class)co 5853 c2o 6389 cmap 6626 ℕ∞xnninf 7096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-map 6628 df-nninf 7097 |
This theorem is referenced by: nnnninfeq 7104 nnnninfeq2 7105 nninfisol 7109 nninfdcinf 7147 nninfwlpor 7150 nnsf 14038 peano4nninf 14039 nninfall 14042 nninfsellemeqinf 14049 |
Copyright terms: Public domain | W3C validator |