ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninff Unicode version

Theorem nninff 7226
Description: An element of ℕ is a sequence of zeroes and ones. (Contributed by Jim Kingdon, 4-Aug-2022.)
Assertion
Ref Expression
nninff  |-  ( A  e.  ->  A : om --> 2o )

Proof of Theorem nninff
Dummy variables  f  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5577 . . . . . 6  |-  ( f  =  A  ->  (
f `  suc  i )  =  ( A `  suc  i ) )
2 fveq1 5577 . . . . . 6  |-  ( f  =  A  ->  (
f `  i )  =  ( A `  i ) )
31, 2sseq12d 3224 . . . . 5  |-  ( f  =  A  ->  (
( f `  suc  i )  C_  (
f `  i )  <->  ( A `  suc  i
)  C_  ( A `  i ) ) )
43ralbidv 2506 . . . 4  |-  ( f  =  A  ->  ( A. i  e.  om  ( f `  suc  i )  C_  (
f `  i )  <->  A. i  e.  om  ( A `  suc  i ) 
C_  ( A `  i ) ) )
5 df-nninf 7224 . . . 4  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
64, 5elrab2 2932 . . 3  |-  ( A  e.  <->  ( A  e.  ( 2o 
^m  om )  /\  A. i  e.  om  ( A `  suc  i ) 
C_  ( A `  i ) ) )
76simplbi 274 . 2  |-  ( A  e.  ->  A  e.  ( 2o 
^m  om ) )
8 elmapi 6759 . 2  |-  ( A  e.  ( 2o  ^m  om )  ->  A : om
--> 2o )
97, 8syl 14 1  |-  ( A  e.  ->  A : om --> 2o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   A.wral 2484    C_ wss 3166   suc csuc 4413   omcom 4639   -->wf 5268   ` cfv 5272  (class class class)co 5946   2oc2o 6498    ^m cmap 6737  ℕxnninf 7223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-map 6739  df-nninf 7224
This theorem is referenced by:  nnnninfeq  7232  nnnninfeq2  7233  nninfisol  7237  nninfdcinf  7275  nninfwlpor  7278  nninfctlemfo  12394  nnsf  15979  peano4nninf  15980  nninfall  15983  nninfsellemeqinf  15990  nnnninfex  15996  nninfnfiinf  15997
  Copyright terms: Public domain W3C validator