ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfex Unicode version

Theorem nninfex 7110
Description: is a set. (Contributed by Jim Kingdon, 10-Aug-2022.)
Assertion
Ref Expression
nninfex  |-  e.  _V

Proof of Theorem nninfex
Dummy variables  f  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nninf 7109 . 2  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
2 2onn 6512 . . . . . 6  |-  2o  e.  om
32elexi 2747 . . . . 5  |-  2o  e.  _V
4 omex 4586 . . . . 5  |-  om  e.  _V
53, 4mapval 6650 . . . 4  |-  ( 2o 
^m  om )  =  {
g  |  g : om --> 2o }
6 mapex 6644 . . . . 5  |-  ( ( om  e.  _V  /\  2o  e.  _V )  ->  { g  |  g : om --> 2o }  e.  _V )
74, 3, 6mp2an 426 . . . 4  |-  { g  |  g : om --> 2o }  e.  _V
85, 7eqeltri 2248 . . 3  |-  ( 2o 
^m  om )  e.  _V
98rabex 4142 . 2  |-  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }  e.  _V
101, 9eqeltri 2248 1  |-  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2146   {cab 2161   A.wral 2453   {crab 2457   _Vcvv 2735    C_ wss 3127   suc csuc 4359   omcom 4583   -->wf 5204   ` cfv 5208  (class class class)co 5865   2oc2o 6401    ^m cmap 6638  ℕxnninf 7108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-id 4287  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1o 6407  df-2o 6408  df-map 6640  df-nninf 7109
This theorem is referenced by:  nninfomnilem  14308  nninffeq  14310  exmidsbthrlem  14311
  Copyright terms: Public domain W3C validator