ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfex Unicode version

Theorem nninfex 7223
Description: is a set. (Contributed by Jim Kingdon, 10-Aug-2022.)
Assertion
Ref Expression
nninfex  |-  e.  _V

Proof of Theorem nninfex
Dummy variables  f  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nninf 7222 . 2  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
2 2onn 6607 . . . . . 6  |-  2o  e.  om
32elexi 2784 . . . . 5  |-  2o  e.  _V
4 omex 4641 . . . . 5  |-  om  e.  _V
53, 4mapval 6747 . . . 4  |-  ( 2o 
^m  om )  =  {
g  |  g : om --> 2o }
6 mapex 6741 . . . . 5  |-  ( ( om  e.  _V  /\  2o  e.  _V )  ->  { g  |  g : om --> 2o }  e.  _V )
74, 3, 6mp2an 426 . . . 4  |-  { g  |  g : om --> 2o }  e.  _V
85, 7eqeltri 2278 . . 3  |-  ( 2o 
^m  om )  e.  _V
98rabex 4188 . 2  |-  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }  e.  _V
101, 9eqeltri 2278 1  |-  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   {cab 2191   A.wral 2484   {crab 2488   _Vcvv 2772    C_ wss 3166   suc csuc 4412   omcom 4638   -->wf 5267   ` cfv 5271  (class class class)co 5944   2oc2o 6496    ^m cmap 6735  ℕxnninf 7221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1o 6502  df-2o 6503  df-map 6737  df-nninf 7222
This theorem is referenced by:  nninfinf  10588  nninfomnilem  15955  nninffeq  15957  exmidsbthrlem  15961
  Copyright terms: Public domain W3C validator