| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnninf | Unicode version | ||
| Description: Elements of
ℕ∞ corresponding to natural numbers. The natural
number |
| Ref | Expression |
|---|---|
| nnnninf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2o 6586 |
. . . . . 6
| |
| 2 | 1 | a1i 9 |
. . . . 5
|
| 3 | 0lt2o 6585 |
. . . . . 6
| |
| 4 | 3 | a1i 9 |
. . . . 5
|
| 5 | nndcel 6644 |
. . . . . 6
| |
| 6 | 5 | ancoms 268 |
. . . . 5
|
| 7 | 2, 4, 6 | ifcldcd 3640 |
. . . 4
|
| 8 | 7 | fmpttd 5789 |
. . 3
|
| 9 | 2onn 6665 |
. . . . 5
| |
| 10 | 9 | elexi 2812 |
. . . 4
|
| 11 | omex 4684 |
. . . 4
| |
| 12 | 10, 11 | elmap 6822 |
. . 3
|
| 13 | 8, 12 | sylibr 134 |
. 2
|
| 14 | ssid 3244 |
. . . . . . . . 9
| |
| 15 | iftrue 3607 |
. . . . . . . . . . 11
| |
| 16 | 15 | sseq1d 3253 |
. . . . . . . . . 10
|
| 17 | 16 | adantl 277 |
. . . . . . . . 9
|
| 18 | 14, 17 | mpbiri 168 |
. . . . . . . 8
|
| 19 | 0ss 3530 |
. . . . . . . . 9
| |
| 20 | iffalse 3610 |
. . . . . . . . . . 11
| |
| 21 | 20 | sseq1d 3253 |
. . . . . . . . . 10
|
| 22 | 21 | adantl 277 |
. . . . . . . . 9
|
| 23 | 19, 22 | mpbiri 168 |
. . . . . . . 8
|
| 24 | peano2 4686 |
. . . . . . . . . . 11
| |
| 25 | 24 | adantl 277 |
. . . . . . . . . 10
|
| 26 | simpl 109 |
. . . . . . . . . 10
| |
| 27 | nndcel 6644 |
. . . . . . . . . 10
| |
| 28 | 25, 26, 27 | syl2anc 411 |
. . . . . . . . 9
|
| 29 | exmiddc 841 |
. . . . . . . . 9
| |
| 30 | 28, 29 | syl 14 |
. . . . . . . 8
|
| 31 | 18, 23, 30 | mpjaodan 803 |
. . . . . . 7
|
| 32 | 31 | adantr 276 |
. . . . . 6
|
| 33 | iftrue 3607 |
. . . . . . 7
| |
| 34 | 33 | adantl 277 |
. . . . . 6
|
| 35 | 32, 34 | sseqtrrd 3263 |
. . . . 5
|
| 36 | ssid 3244 |
. . . . . . 7
| |
| 37 | 36 | a1i 9 |
. . . . . 6
|
| 38 | nnord 4703 |
. . . . . . . . . . . 12
| |
| 39 | ordtr 4468 |
. . . . . . . . . . . 12
| |
| 40 | 38, 39 | syl 14 |
. . . . . . . . . . 11
|
| 41 | trsuc 4512 |
. . . . . . . . . . 11
| |
| 42 | 40, 41 | sylan 283 |
. . . . . . . . . 10
|
| 43 | 42 | ex 115 |
. . . . . . . . 9
|
| 44 | 43 | adantr 276 |
. . . . . . . 8
|
| 45 | 44 | con3dimp 638 |
. . . . . . 7
|
| 46 | 45, 20 | syl 14 |
. . . . . 6
|
| 47 | iffalse 3610 |
. . . . . . 7
| |
| 48 | 47 | adantl 277 |
. . . . . 6
|
| 49 | 37, 46, 48 | 3sstr4d 3269 |
. . . . 5
|
| 50 | nndcel 6644 |
. . . . . . 7
| |
| 51 | 50 | ancoms 268 |
. . . . . 6
|
| 52 | exmiddc 841 |
. . . . . 6
| |
| 53 | 51, 52 | syl 14 |
. . . . 5
|
| 54 | 35, 49, 53 | mpjaodan 803 |
. . . 4
|
| 55 | 1 | a1i 9 |
. . . . . 6
|
| 56 | 3 | a1i 9 |
. . . . . 6
|
| 57 | 55, 56, 28 | ifcldcd 3640 |
. . . . 5
|
| 58 | eleq1 2292 |
. . . . . . 7
| |
| 59 | 58 | ifbid 3624 |
. . . . . 6
|
| 60 | eqid 2229 |
. . . . . 6
| |
| 61 | 59, 60 | fvmptg 5709 |
. . . . 5
|
| 62 | 25, 57, 61 | syl2anc 411 |
. . . 4
|
| 63 | simpr 110 |
. . . . 5
| |
| 64 | 55, 56, 51 | ifcldcd 3640 |
. . . . 5
|
| 65 | eleq1 2292 |
. . . . . . 7
| |
| 66 | 65 | ifbid 3624 |
. . . . . 6
|
| 67 | 66, 60 | fvmptg 5709 |
. . . . 5
|
| 68 | 63, 64, 67 | syl2anc 411 |
. . . 4
|
| 69 | 54, 62, 68 | 3sstr4d 3269 |
. . 3
|
| 70 | 69 | ralrimiva 2603 |
. 2
|
| 71 | fveq1 5625 |
. . . . 5
| |
| 72 | fveq1 5625 |
. . . . 5
| |
| 73 | 71, 72 | sseq12d 3255 |
. . . 4
|
| 74 | 73 | ralbidv 2530 |
. . 3
|
| 75 | df-nninf 7283 |
. . 3
| |
| 76 | 74, 75 | elrab2 2962 |
. 2
|
| 77 | 13, 70, 76 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1o 6560 df-2o 6561 df-map 6795 df-nninf 7283 |
| This theorem is referenced by: nnnninf2 7290 fnn0nninf 10655 nninfinf 10660 nninfsellemdc 16335 nninfsellemqall 16340 nninffeq 16345 |
| Copyright terms: Public domain | W3C validator |