ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnninf Unicode version

Theorem nnnninf 7023
Description: Elements of ℕ corresponding to natural numbers. The natural number  N corresponds to a sequence of  N ones followed by zeroes. Contrast to a sequence which is all ones as seen at infnninf 7022. Remark/TODO: the theorem still holds if  N  =  om, that is, the antecedent could be weakened to  N  e.  suc  om. (Contributed by Jim Kingdon, 14-Jul-2022.)
Assertion
Ref Expression
nnnninf  |-  ( N  e.  om  ->  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e.
)
Distinct variable group:    i, N

Proof of Theorem nnnninf
Dummy variables  f  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1oex 6321 . . . . . . . 8  |-  1o  e.  _V
21sucid 4339 . . . . . . 7  |-  1o  e.  suc  1o
3 df-2o 6314 . . . . . . 7  |-  2o  =  suc  1o
42, 3eleqtrri 2215 . . . . . 6  |-  1o  e.  2o
54a1i 9 . . . . 5  |-  ( ( N  e.  om  /\  i  e.  om )  ->  1o  e.  2o )
6 2on0 6323 . . . . . . 7  |-  2o  =/=  (/)
7 2onn 6417 . . . . . . . 8  |-  2o  e.  om
8 nn0eln0 4533 . . . . . . . 8  |-  ( 2o  e.  om  ->  ( (/) 
e.  2o  <->  2o  =/=  (/) ) )
97, 8ax-mp 5 . . . . . . 7  |-  ( (/)  e.  2o  <->  2o  =/=  (/) )
106, 9mpbir 145 . . . . . 6  |-  (/)  e.  2o
1110a1i 9 . . . . 5  |-  ( ( N  e.  om  /\  i  e.  om )  -> 
(/)  e.  2o )
12 nndcel 6396 . . . . . 6  |-  ( ( i  e.  om  /\  N  e.  om )  -> DECID  i  e.  N )
1312ancoms 266 . . . . 5  |-  ( ( N  e.  om  /\  i  e.  om )  -> DECID  i  e.  N )
145, 11, 13ifcldcd 3507 . . . 4  |-  ( ( N  e.  om  /\  i  e.  om )  ->  if ( i  e.  N ,  1o ,  (/) )  e.  2o )
15 eqid 2139 . . . 4  |-  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) )
1614, 15fmptd 5574 . . 3  |-  ( N  e.  om  ->  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) : om --> 2o )
177elexi 2698 . . . 4  |-  2o  e.  _V
18 omex 4507 . . . 4  |-  om  e.  _V
1917, 18elmap 6571 . . 3  |-  ( ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e.  ( 2o  ^m  om )  <->  ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) ) : om --> 2o )
2016, 19sylibr 133 . 2  |-  ( N  e.  om  ->  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e.  ( 2o  ^m  om ) )
21 ssid 3117 . . . . . . . . 9  |-  1o  C_  1o
22 iftrue 3479 . . . . . . . . . . 11  |-  ( suc  j  e.  N  ->  if ( suc  j  e.  N ,  1o ,  (/) )  =  1o )
2322sseq1d 3126 . . . . . . . . . 10  |-  ( suc  j  e.  N  -> 
( if ( suc  j  e.  N ,  1o ,  (/) )  C_  1o 
<->  1o  C_  1o )
)
2423adantl 275 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  j  e.  om )  /\  suc  j  e.  N
)  ->  ( if ( suc  j  e.  N ,  1o ,  (/) )  C_  1o 
<->  1o  C_  1o )
)
2521, 24mpbiri 167 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  j  e.  om )  /\  suc  j  e.  N
)  ->  if ( suc  j  e.  N ,  1o ,  (/) )  C_  1o )
26 0ss 3401 . . . . . . . . 9  |-  (/)  C_  1o
27 iffalse 3482 . . . . . . . . . . 11  |-  ( -. 
suc  j  e.  N  ->  if ( suc  j  e.  N ,  1o ,  (/) )  =  (/) )
2827sseq1d 3126 . . . . . . . . . 10  |-  ( -. 
suc  j  e.  N  ->  ( if ( suc  j  e.  N ,  1o ,  (/) )  C_  1o 
<->  (/)  C_  1o ) )
2928adantl 275 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  j  e.  om )  /\  -.  suc  j  e.  N )  ->  ( if ( suc  j  e.  N ,  1o ,  (/) )  C_  1o  <->  (/)  C_  1o ) )
3026, 29mpbiri 167 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  j  e.  om )  /\  -.  suc  j  e.  N )  ->  if ( suc  j  e.  N ,  1o ,  (/) )  C_  1o )
31 peano2 4509 . . . . . . . . . . 11  |-  ( j  e.  om  ->  suc  j  e.  om )
3231adantl 275 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  j  e.  om )  ->  suc  j  e.  om )
33 simpl 108 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  j  e.  om )  ->  N  e.  om )
34 nndcel 6396 . . . . . . . . . 10  |-  ( ( suc  j  e.  om  /\  N  e.  om )  -> DECID  suc  j  e.  N )
3532, 33, 34syl2anc 408 . . . . . . . . 9  |-  ( ( N  e.  om  /\  j  e.  om )  -> DECID  suc  j  e.  N )
36 exmiddc 821 . . . . . . . . 9  |-  (DECID  suc  j  e.  N  ->  ( suc  j  e.  N  \/  -.  suc  j  e.  N
) )
3735, 36syl 14 . . . . . . . 8  |-  ( ( N  e.  om  /\  j  e.  om )  ->  ( suc  j  e.  N  \/  -.  suc  j  e.  N )
)
3825, 30, 37mpjaodan 787 . . . . . . 7  |-  ( ( N  e.  om  /\  j  e.  om )  ->  if ( suc  j  e.  N ,  1o ,  (/) )  C_  1o )
3938adantr 274 . . . . . 6  |-  ( ( ( N  e.  om  /\  j  e.  om )  /\  j  e.  N
)  ->  if ( suc  j  e.  N ,  1o ,  (/) )  C_  1o )
40 iftrue 3479 . . . . . . 7  |-  ( j  e.  N  ->  if ( j  e.  N ,  1o ,  (/) )  =  1o )
4140adantl 275 . . . . . 6  |-  ( ( ( N  e.  om  /\  j  e.  om )  /\  j  e.  N
)  ->  if (
j  e.  N ,  1o ,  (/) )  =  1o )
4239, 41sseqtrrd 3136 . . . . 5  |-  ( ( ( N  e.  om  /\  j  e.  om )  /\  j  e.  N
)  ->  if ( suc  j  e.  N ,  1o ,  (/) )  C_  if ( j  e.  N ,  1o ,  (/) ) )
43 ssid 3117 . . . . . . 7  |-  (/)  C_  (/)
4443a1i 9 . . . . . 6  |-  ( ( ( N  e.  om  /\  j  e.  om )  /\  -.  j  e.  N
)  ->  (/)  C_  (/) )
45 nnord 4525 . . . . . . . . . . . 12  |-  ( N  e.  om  ->  Ord  N )
46 ordtr 4300 . . . . . . . . . . . 12  |-  ( Ord 
N  ->  Tr  N
)
4745, 46syl 14 . . . . . . . . . . 11  |-  ( N  e.  om  ->  Tr  N )
48 trsuc 4344 . . . . . . . . . . 11  |-  ( ( Tr  N  /\  suc  j  e.  N )  ->  j  e.  N )
4947, 48sylan 281 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  suc  j  e.  N
)  ->  j  e.  N )
5049ex 114 . . . . . . . . 9  |-  ( N  e.  om  ->  ( suc  j  e.  N  ->  j  e.  N ) )
5150adantr 274 . . . . . . . 8  |-  ( ( N  e.  om  /\  j  e.  om )  ->  ( suc  j  e.  N  ->  j  e.  N ) )
5251con3dimp 624 . . . . . . 7  |-  ( ( ( N  e.  om  /\  j  e.  om )  /\  -.  j  e.  N
)  ->  -.  suc  j  e.  N )
5352, 27syl 14 . . . . . 6  |-  ( ( ( N  e.  om  /\  j  e.  om )  /\  -.  j  e.  N
)  ->  if ( suc  j  e.  N ,  1o ,  (/) )  =  (/) )
54 iffalse 3482 . . . . . . 7  |-  ( -.  j  e.  N  ->  if ( j  e.  N ,  1o ,  (/) )  =  (/) )
5554adantl 275 . . . . . 6  |-  ( ( ( N  e.  om  /\  j  e.  om )  /\  -.  j  e.  N
)  ->  if (
j  e.  N ,  1o ,  (/) )  =  (/) )
5644, 53, 553sstr4d 3142 . . . . 5  |-  ( ( ( N  e.  om  /\  j  e.  om )  /\  -.  j  e.  N
)  ->  if ( suc  j  e.  N ,  1o ,  (/) )  C_  if ( j  e.  N ,  1o ,  (/) ) )
57 nndcel 6396 . . . . . . 7  |-  ( ( j  e.  om  /\  N  e.  om )  -> DECID  j  e.  N )
5857ancoms 266 . . . . . 6  |-  ( ( N  e.  om  /\  j  e.  om )  -> DECID  j  e.  N )
59 exmiddc 821 . . . . . 6  |-  (DECID  j  e.  N  ->  ( j  e.  N  \/  -.  j  e.  N )
)
6058, 59syl 14 . . . . 5  |-  ( ( N  e.  om  /\  j  e.  om )  ->  ( j  e.  N  \/  -.  j  e.  N
) )
6142, 56, 60mpjaodan 787 . . . 4  |-  ( ( N  e.  om  /\  j  e.  om )  ->  if ( suc  j  e.  N ,  1o ,  (/) )  C_  if (
j  e.  N ,  1o ,  (/) ) )
624a1i 9 . . . . . 6  |-  ( ( N  e.  om  /\  j  e.  om )  ->  1o  e.  2o )
6310a1i 9 . . . . . 6  |-  ( ( N  e.  om  /\  j  e.  om )  -> 
(/)  e.  2o )
6462, 63, 35ifcldcd 3507 . . . . 5  |-  ( ( N  e.  om  /\  j  e.  om )  ->  if ( suc  j  e.  N ,  1o ,  (/) )  e.  2o )
65 eleq1 2202 . . . . . . 7  |-  ( i  =  suc  j  -> 
( i  e.  N  <->  suc  j  e.  N ) )
6665ifbid 3493 . . . . . 6  |-  ( i  =  suc  j  ->  if ( i  e.  N ,  1o ,  (/) )  =  if ( suc  j  e.  N ,  1o ,  (/) ) )
6766, 15fvmptg 5497 . . . . 5  |-  ( ( suc  j  e.  om  /\  if ( suc  j  e.  N ,  1o ,  (/) )  e.  2o )  ->  ( ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 suc  j )  =  if ( suc  j  e.  N ,  1o ,  (/) ) )
6832, 64, 67syl2anc 408 . . . 4  |-  ( ( N  e.  om  /\  j  e.  om )  ->  ( ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `  suc  j )  =  if ( suc  j  e.  N ,  1o ,  (/) ) )
69 simpr 109 . . . . 5  |-  ( ( N  e.  om  /\  j  e.  om )  ->  j  e.  om )
7062, 63, 58ifcldcd 3507 . . . . 5  |-  ( ( N  e.  om  /\  j  e.  om )  ->  if ( j  e.  N ,  1o ,  (/) )  e.  2o )
71 eleq1 2202 . . . . . . 7  |-  ( i  =  j  ->  (
i  e.  N  <->  j  e.  N ) )
7271ifbid 3493 . . . . . 6  |-  ( i  =  j  ->  if ( i  e.  N ,  1o ,  (/) )  =  if ( j  e.  N ,  1o ,  (/) ) )
7372, 15fvmptg 5497 . . . . 5  |-  ( ( j  e.  om  /\  if ( j  e.  N ,  1o ,  (/) )  e.  2o )  ->  (
( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 j )  =  if ( j  e.  N ,  1o ,  (/) ) )
7469, 70, 73syl2anc 408 . . . 4  |-  ( ( N  e.  om  /\  j  e.  om )  ->  ( ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `  j )  =  if ( j  e.  N ,  1o ,  (/) ) )
7561, 68, 743sstr4d 3142 . . 3  |-  ( ( N  e.  om  /\  j  e.  om )  ->  ( ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `  suc  j )  C_  (
( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 j ) )
7675ralrimiva 2505 . 2  |-  ( N  e.  om  ->  A. j  e.  om  ( ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 suc  j )  C_  ( ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `  j ) )
77 fveq1 5420 . . . . 5  |-  ( f  =  ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) )  -> 
( f `  suc  j )  =  ( ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 suc  j )
)
78 fveq1 5420 . . . . 5  |-  ( f  =  ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) )  -> 
( f `  j
)  =  ( ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 j ) )
7977, 78sseq12d 3128 . . . 4  |-  ( f  =  ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) )  -> 
( ( f `  suc  j )  C_  (
f `  j )  <->  ( ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 suc  j )  C_  ( ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `  j ) ) )
8079ralbidv 2437 . . 3  |-  ( f  =  ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) )  -> 
( A. j  e. 
om  ( f `  suc  j )  C_  (
f `  j )  <->  A. j  e.  om  (
( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 suc  j )  C_  ( ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `  j ) ) )
81 df-nninf 7007 . . 3  |-  =  { f  e.  ( 2o  ^m  om )  |  A. j  e.  om  ( f `  suc  j )  C_  (
f `  j ) }
8280, 81elrab2 2843 . 2  |-  ( ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e.  <->  ( ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e.  ( 2o  ^m  om )  /\  A. j  e.  om  ( ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 suc  j )  C_  ( ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `  j ) ) )
8320, 76, 82sylanbrc 413 1  |-  ( N  e.  om  ->  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  e.
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697  DECID wdc 819    = wceq 1331    e. wcel 1480    =/= wne 2308   A.wral 2416    C_ wss 3071   (/)c0 3363   ifcif 3474    |-> cmpt 3989   Tr wtr 4026   Ord word 4284   suc csuc 4287   omcom 4504   -->wf 5119   ` cfv 5123  (class class class)co 5774   1oc1o 6306   2oc2o 6307    ^m cmap 6542  ℕxnninf 7005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1o 6313  df-2o 6314  df-map 6544  df-nninf 7007
This theorem is referenced by:  fnn0nninf  10224  nninfsellemdc  13315  nninfsellemqall  13320  nninffeq  13325
  Copyright terms: Public domain W3C validator