ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infnninfOLD Unicode version

Theorem infnninfOLD 7080
Description: Obsolete version of infnninf 7079 as of 10-Aug-2024. (Contributed by Jim Kingdon, 14-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
infnninfOLD  |-  ( om 
X.  { 1o }
)  e.

Proof of Theorem infnninfOLD
Dummy variables  f  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2o 6401 . . . 4  |-  1o  e.  2o
21fconst6 5381 . . 3  |-  ( om 
X.  { 1o }
) : om --> 2o
3 2onn 6480 . . . . 5  |-  2o  e.  om
43elexi 2733 . . . 4  |-  2o  e.  _V
5 omex 4564 . . . 4  |-  om  e.  _V
64, 5elmap 6634 . . 3  |-  ( ( om  X.  { 1o } )  e.  ( 2o  ^m  om )  <->  ( om  X.  { 1o } ) : om --> 2o )
72, 6mpbir 145 . 2  |-  ( om 
X.  { 1o }
)  e.  ( 2o 
^m  om )
8 peano2 4566 . . . . . 6  |-  ( i  e.  om  ->  suc  i  e.  om )
9 1oex 6383 . . . . . . 7  |-  1o  e.  _V
109fvconst2 5695 . . . . . 6  |-  ( suc  i  e.  om  ->  ( ( om  X.  { 1o } ) `  suc  i )  =  1o )
118, 10syl 14 . . . . 5  |-  ( i  e.  om  ->  (
( om  X.  { 1o } ) `  suc  i )  =  1o )
129fvconst2 5695 . . . . 5  |-  ( i  e.  om  ->  (
( om  X.  { 1o } ) `  i
)  =  1o )
1311, 12eqtr4d 2200 . . . 4  |-  ( i  e.  om  ->  (
( om  X.  { 1o } ) `  suc  i )  =  ( ( om  X.  { 1o } ) `  i
) )
14 eqimss 3191 . . . 4  |-  ( ( ( om  X.  { 1o } ) `  suc  i )  =  ( ( om  X.  { 1o } ) `  i
)  ->  ( ( om  X.  { 1o }
) `  suc  i ) 
C_  ( ( om 
X.  { 1o }
) `  i )
)
1513, 14syl 14 . . 3  |-  ( i  e.  om  ->  (
( om  X.  { 1o } ) `  suc  i )  C_  (
( om  X.  { 1o } ) `  i
) )
1615rgen 2517 . 2  |-  A. i  e.  om  ( ( om 
X.  { 1o }
) `  suc  i ) 
C_  ( ( om 
X.  { 1o }
) `  i )
17 fveq1 5479 . . . . 5  |-  ( f  =  ( om  X.  { 1o } )  -> 
( f `  suc  i )  =  ( ( om  X.  { 1o } ) `  suc  i ) )
18 fveq1 5479 . . . . 5  |-  ( f  =  ( om  X.  { 1o } )  -> 
( f `  i
)  =  ( ( om  X.  { 1o } ) `  i
) )
1917, 18sseq12d 3168 . . . 4  |-  ( f  =  ( om  X.  { 1o } )  -> 
( ( f `  suc  i )  C_  (
f `  i )  <->  ( ( om  X.  { 1o } ) `  suc  i )  C_  (
( om  X.  { 1o } ) `  i
) ) )
2019ralbidv 2464 . . 3  |-  ( f  =  ( om  X.  { 1o } )  -> 
( A. i  e. 
om  ( f `  suc  i )  C_  (
f `  i )  <->  A. i  e.  om  (
( om  X.  { 1o } ) `  suc  i )  C_  (
( om  X.  { 1o } ) `  i
) ) )
21 df-nninf 7076 . . 3  |-  =  { f  e.  ( 2o  ^m  om )  |  A. i  e.  om  ( f `  suc  i )  C_  (
f `  i ) }
2220, 21elrab2 2880 . 2  |-  ( ( om  X.  { 1o } )  e.  <-> 
( ( om  X.  { 1o } )  e.  ( 2o  ^m  om )  /\  A. i  e. 
om  ( ( om 
X.  { 1o }
) `  suc  i ) 
C_  ( ( om 
X.  { 1o }
) `  i )
) )
237, 16, 22mpbir2an 931 1  |-  ( om 
X.  { 1o }
)  e.
Colors of variables: wff set class
Syntax hints:    = wceq 1342    e. wcel 2135   A.wral 2442    C_ wss 3111   {csn 3570   suc csuc 4337   omcom 4561    X. cxp 4596   -->wf 5178   ` cfv 5182  (class class class)co 5836   1oc1o 6368   2oc2o 6369    ^m cmap 6605  ℕxnninf 7075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1o 6375  df-2o 6376  df-map 6607  df-nninf 7076
This theorem is referenced by:  fxnn0nninf  10363
  Copyright terms: Public domain W3C validator