ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infnninf Unicode version

Theorem infnninf 7287
Description: The point at infinity in ℕ is the constant sequence equal to  1o. Note that with our encoding of functions, that constant function can also be expressed as  ( om  X.  { 1o } ), as fconstmpt 4765 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.)
Assertion
Ref Expression
infnninf  |-  ( i  e.  om  |->  1o )  e.

Proof of Theorem infnninf
Dummy variables  f  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2o 6586 . . . . . 6  |-  1o  e.  2o
21a1i 9 . . . . 5  |-  ( ( T.  /\  i  e. 
om )  ->  1o  e.  2o )
32fmpttd 5789 . . . 4  |-  ( T. 
->  ( i  e.  om  |->  1o ) : om --> 2o )
43mptru 1404 . . 3  |-  ( i  e.  om  |->  1o ) : om --> 2o
5 2on 6569 . . . 4  |-  2o  e.  On
6 omex 4684 . . . 4  |-  om  e.  _V
7 elmapg 6806 . . . 4  |-  ( ( 2o  e.  On  /\  om  e.  _V )  -> 
( ( i  e. 
om  |->  1o )  e.  ( 2o  ^m  om ) 
<->  ( i  e.  om  |->  1o ) : om --> 2o ) )
85, 6, 7mp2an 426 . . 3  |-  ( ( i  e.  om  |->  1o )  e.  ( 2o 
^m  om )  <->  ( i  e.  om  |->  1o ) : om --> 2o )
94, 8mpbir 146 . 2  |-  ( i  e.  om  |->  1o )  e.  ( 2o  ^m  om )
10 peano2 4686 . . . . . 6  |-  ( j  e.  om  ->  suc  j  e.  om )
11 eqidd 2230 . . . . . . 7  |-  ( i  =  suc  j  ->  1o  =  1o )
12 eqid 2229 . . . . . . 7  |-  ( i  e.  om  |->  1o )  =  ( i  e. 
om  |->  1o )
13 1oex 6568 . . . . . . 7  |-  1o  e.  _V
1411, 12, 13fvmpt 5710 . . . . . 6  |-  ( suc  j  e.  om  ->  ( ( i  e.  om  |->  1o ) `  suc  j
)  =  1o )
1510, 14syl 14 . . . . 5  |-  ( j  e.  om  ->  (
( i  e.  om  |->  1o ) `  suc  j
)  =  1o )
16 eqidd 2230 . . . . . 6  |-  ( i  =  j  ->  1o  =  1o )
1716, 12, 13fvmpt 5710 . . . . 5  |-  ( j  e.  om  ->  (
( i  e.  om  |->  1o ) `  j )  =  1o )
1815, 17eqtr4d 2265 . . . 4  |-  ( j  e.  om  ->  (
( i  e.  om  |->  1o ) `  suc  j
)  =  ( ( i  e.  om  |->  1o ) `  j ) )
19 eqimss 3278 . . . 4  |-  ( ( ( i  e.  om  |->  1o ) `  suc  j
)  =  ( ( i  e.  om  |->  1o ) `  j )  ->  ( ( i  e.  om  |->  1o ) `
 suc  j )  C_  ( ( i  e. 
om  |->  1o ) `  j ) )
2018, 19syl 14 . . 3  |-  ( j  e.  om  ->  (
( i  e.  om  |->  1o ) `  suc  j
)  C_  ( (
i  e.  om  |->  1o ) `  j ) )
2120rgen 2583 . 2  |-  A. j  e.  om  ( ( i  e.  om  |->  1o ) `
 suc  j )  C_  ( ( i  e. 
om  |->  1o ) `  j )
22 fveq1 5625 . . . . 5  |-  ( f  =  ( i  e. 
om  |->  1o )  -> 
( f `  suc  j )  =  ( ( i  e.  om  |->  1o ) `  suc  j
) )
23 fveq1 5625 . . . . 5  |-  ( f  =  ( i  e. 
om  |->  1o )  -> 
( f `  j
)  =  ( ( i  e.  om  |->  1o ) `  j ) )
2422, 23sseq12d 3255 . . . 4  |-  ( f  =  ( i  e. 
om  |->  1o )  -> 
( ( f `  suc  j )  C_  (
f `  j )  <->  ( ( i  e.  om  |->  1o ) `  suc  j
)  C_  ( (
i  e.  om  |->  1o ) `  j ) ) )
2524ralbidv 2530 . . 3  |-  ( f  =  ( i  e. 
om  |->  1o )  -> 
( A. j  e. 
om  ( f `  suc  j )  C_  (
f `  j )  <->  A. j  e.  om  (
( i  e.  om  |->  1o ) `  suc  j
)  C_  ( (
i  e.  om  |->  1o ) `  j ) ) )
26 df-nninf 7283 . . 3  |-  =  { f  e.  ( 2o  ^m  om )  |  A. j  e.  om  ( f `  suc  j )  C_  (
f `  j ) }
2725, 26elrab2 2962 . 2  |-  ( ( i  e.  om  |->  1o )  e.  <-> 
( ( i  e. 
om  |->  1o )  e.  ( 2o  ^m  om )  /\  A. j  e. 
om  ( ( i  e.  om  |->  1o ) `
 suc  j )  C_  ( ( i  e. 
om  |->  1o ) `  j ) ) )
289, 21, 27mpbir2an 948 1  |-  ( i  e.  om  |->  1o )  e.
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395   T. wtru 1396    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197    |-> cmpt 4144   Oncon0 4453   suc csuc 4455   omcom 4681   -->wf 5313   ` cfv 5317  (class class class)co 6000   1oc1o 6553   2oc2o 6554    ^m cmap 6793  ℕxnninf 7282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1o 6560  df-2o 6561  df-map 6795  df-nninf 7283
This theorem is referenced by:  nnnninf2  7290  nninfwlpoimlemdc  7340  nninfct  12557  nninffeq  16345  nnnninfen  16346
  Copyright terms: Public domain W3C validator