| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infnninf | Unicode version | ||
| Description: The point at infinity in
ℕ∞ is the constant sequence equal to
|
| Ref | Expression |
|---|---|
| infnninf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2o 6586 |
. . . . . 6
| |
| 2 | 1 | a1i 9 |
. . . . 5
|
| 3 | 2 | fmpttd 5789 |
. . . 4
|
| 4 | 3 | mptru 1404 |
. . 3
|
| 5 | 2on 6569 |
. . . 4
| |
| 6 | omex 4684 |
. . . 4
| |
| 7 | elmapg 6806 |
. . . 4
| |
| 8 | 5, 6, 7 | mp2an 426 |
. . 3
|
| 9 | 4, 8 | mpbir 146 |
. 2
|
| 10 | peano2 4686 |
. . . . . 6
| |
| 11 | eqidd 2230 |
. . . . . . 7
| |
| 12 | eqid 2229 |
. . . . . . 7
| |
| 13 | 1oex 6568 |
. . . . . . 7
| |
| 14 | 11, 12, 13 | fvmpt 5710 |
. . . . . 6
|
| 15 | 10, 14 | syl 14 |
. . . . 5
|
| 16 | eqidd 2230 |
. . . . . 6
| |
| 17 | 16, 12, 13 | fvmpt 5710 |
. . . . 5
|
| 18 | 15, 17 | eqtr4d 2265 |
. . . 4
|
| 19 | eqimss 3278 |
. . . 4
| |
| 20 | 18, 19 | syl 14 |
. . 3
|
| 21 | 20 | rgen 2583 |
. 2
|
| 22 | fveq1 5625 |
. . . . 5
| |
| 23 | fveq1 5625 |
. . . . 5
| |
| 24 | 22, 23 | sseq12d 3255 |
. . . 4
|
| 25 | 24 | ralbidv 2530 |
. . 3
|
| 26 | df-nninf 7283 |
. . 3
| |
| 27 | 25, 26 | elrab2 2962 |
. 2
|
| 28 | 9, 21, 27 | mpbir2an 948 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1o 6560 df-2o 6561 df-map 6795 df-nninf 7283 |
| This theorem is referenced by: nnnninf2 7290 nninfwlpoimlemdc 7340 nninfct 12557 nninffeq 16345 nnnninfen 16346 |
| Copyright terms: Public domain | W3C validator |