Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infnninf | Unicode version |
Description: The point at infinity in ℕ∞ is the constant sequence equal to . Note that with our encoding of functions, that constant function can also be expressed as , as fconstmpt 4651 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.) |
Ref | Expression |
---|---|
infnninf | ℕ∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2o 6410 | . . . . . 6 | |
2 | 1 | a1i 9 | . . . . 5 |
3 | 2 | fmpttd 5640 | . . . 4 |
4 | 3 | mptru 1352 | . . 3 |
5 | 2on 6393 | . . . 4 | |
6 | omex 4570 | . . . 4 | |
7 | elmapg 6627 | . . . 4 | |
8 | 5, 6, 7 | mp2an 423 | . . 3 |
9 | 4, 8 | mpbir 145 | . 2 |
10 | peano2 4572 | . . . . . 6 | |
11 | eqidd 2166 | . . . . . . 7 | |
12 | eqid 2165 | . . . . . . 7 | |
13 | 1oex 6392 | . . . . . . 7 | |
14 | 11, 12, 13 | fvmpt 5563 | . . . . . 6 |
15 | 10, 14 | syl 14 | . . . . 5 |
16 | eqidd 2166 | . . . . . 6 | |
17 | 16, 12, 13 | fvmpt 5563 | . . . . 5 |
18 | 15, 17 | eqtr4d 2201 | . . . 4 |
19 | eqimss 3196 | . . . 4 | |
20 | 18, 19 | syl 14 | . . 3 |
21 | 20 | rgen 2519 | . 2 |
22 | fveq1 5485 | . . . . 5 | |
23 | fveq1 5485 | . . . . 5 | |
24 | 22, 23 | sseq12d 3173 | . . . 4 |
25 | 24 | ralbidv 2466 | . . 3 |
26 | df-nninf 7085 | . . 3 ℕ∞ | |
27 | 25, 26 | elrab2 2885 | . 2 ℕ∞ |
28 | 9, 21, 27 | mpbir2an 932 | 1 ℕ∞ |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wtru 1344 wcel 2136 wral 2444 cvv 2726 wss 3116 cmpt 4043 con0 4341 csuc 4343 com 4567 wf 5184 cfv 5188 (class class class)co 5842 c1o 6377 c2o 6378 cmap 6614 ℕ∞xnninf 7084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1o 6384 df-2o 6385 df-map 6616 df-nninf 7085 |
This theorem is referenced by: nnnninf2 7091 nninffeq 13900 |
Copyright terms: Public domain | W3C validator |