| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infnninf | Unicode version | ||
| Description: The point at infinity in
ℕ∞ is the constant sequence equal to
|
| Ref | Expression |
|---|---|
| infnninf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2o 6541 |
. . . . . 6
| |
| 2 | 1 | a1i 9 |
. . . . 5
|
| 3 | 2 | fmpttd 5748 |
. . . 4
|
| 4 | 3 | mptru 1382 |
. . 3
|
| 5 | 2on 6524 |
. . . 4
| |
| 6 | omex 4649 |
. . . 4
| |
| 7 | elmapg 6761 |
. . . 4
| |
| 8 | 5, 6, 7 | mp2an 426 |
. . 3
|
| 9 | 4, 8 | mpbir 146 |
. 2
|
| 10 | peano2 4651 |
. . . . . 6
| |
| 11 | eqidd 2207 |
. . . . . . 7
| |
| 12 | eqid 2206 |
. . . . . . 7
| |
| 13 | 1oex 6523 |
. . . . . . 7
| |
| 14 | 11, 12, 13 | fvmpt 5669 |
. . . . . 6
|
| 15 | 10, 14 | syl 14 |
. . . . 5
|
| 16 | eqidd 2207 |
. . . . . 6
| |
| 17 | 16, 12, 13 | fvmpt 5669 |
. . . . 5
|
| 18 | 15, 17 | eqtr4d 2242 |
. . . 4
|
| 19 | eqimss 3251 |
. . . 4
| |
| 20 | 18, 19 | syl 14 |
. . 3
|
| 21 | 20 | rgen 2560 |
. 2
|
| 22 | fveq1 5588 |
. . . . 5
| |
| 23 | fveq1 5588 |
. . . . 5
| |
| 24 | 22, 23 | sseq12d 3228 |
. . . 4
|
| 25 | 24 | ralbidv 2507 |
. . 3
|
| 26 | df-nninf 7237 |
. . 3
| |
| 27 | 25, 26 | elrab2 2936 |
. 2
|
| 28 | 9, 21, 27 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1o 6515 df-2o 6516 df-map 6750 df-nninf 7237 |
| This theorem is referenced by: nnnninf2 7244 nninfwlpoimlemdc 7294 nninfct 12437 nninffeq 16098 nnnninfen 16099 |
| Copyright terms: Public domain | W3C validator |