ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infnninf Unicode version

Theorem infnninf 7183
Description: The point at infinity in ℕ is the constant sequence equal to  1o. Note that with our encoding of functions, that constant function can also be expressed as  ( om  X.  { 1o } ), as fconstmpt 4706 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.)
Assertion
Ref Expression
infnninf  |-  ( i  e.  om  |->  1o )  e.

Proof of Theorem infnninf
Dummy variables  f  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2o 6495 . . . . . 6  |-  1o  e.  2o
21a1i 9 . . . . 5  |-  ( ( T.  /\  i  e. 
om )  ->  1o  e.  2o )
32fmpttd 5713 . . . 4  |-  ( T. 
->  ( i  e.  om  |->  1o ) : om --> 2o )
43mptru 1373 . . 3  |-  ( i  e.  om  |->  1o ) : om --> 2o
5 2on 6478 . . . 4  |-  2o  e.  On
6 omex 4625 . . . 4  |-  om  e.  _V
7 elmapg 6715 . . . 4  |-  ( ( 2o  e.  On  /\  om  e.  _V )  -> 
( ( i  e. 
om  |->  1o )  e.  ( 2o  ^m  om ) 
<->  ( i  e.  om  |->  1o ) : om --> 2o ) )
85, 6, 7mp2an 426 . . 3  |-  ( ( i  e.  om  |->  1o )  e.  ( 2o 
^m  om )  <->  ( i  e.  om  |->  1o ) : om --> 2o )
94, 8mpbir 146 . 2  |-  ( i  e.  om  |->  1o )  e.  ( 2o  ^m  om )
10 peano2 4627 . . . . . 6  |-  ( j  e.  om  ->  suc  j  e.  om )
11 eqidd 2194 . . . . . . 7  |-  ( i  =  suc  j  ->  1o  =  1o )
12 eqid 2193 . . . . . . 7  |-  ( i  e.  om  |->  1o )  =  ( i  e. 
om  |->  1o )
13 1oex 6477 . . . . . . 7  |-  1o  e.  _V
1411, 12, 13fvmpt 5634 . . . . . 6  |-  ( suc  j  e.  om  ->  ( ( i  e.  om  |->  1o ) `  suc  j
)  =  1o )
1510, 14syl 14 . . . . 5  |-  ( j  e.  om  ->  (
( i  e.  om  |->  1o ) `  suc  j
)  =  1o )
16 eqidd 2194 . . . . . 6  |-  ( i  =  j  ->  1o  =  1o )
1716, 12, 13fvmpt 5634 . . . . 5  |-  ( j  e.  om  ->  (
( i  e.  om  |->  1o ) `  j )  =  1o )
1815, 17eqtr4d 2229 . . . 4  |-  ( j  e.  om  ->  (
( i  e.  om  |->  1o ) `  suc  j
)  =  ( ( i  e.  om  |->  1o ) `  j ) )
19 eqimss 3233 . . . 4  |-  ( ( ( i  e.  om  |->  1o ) `  suc  j
)  =  ( ( i  e.  om  |->  1o ) `  j )  ->  ( ( i  e.  om  |->  1o ) `
 suc  j )  C_  ( ( i  e. 
om  |->  1o ) `  j ) )
2018, 19syl 14 . . 3  |-  ( j  e.  om  ->  (
( i  e.  om  |->  1o ) `  suc  j
)  C_  ( (
i  e.  om  |->  1o ) `  j ) )
2120rgen 2547 . 2  |-  A. j  e.  om  ( ( i  e.  om  |->  1o ) `
 suc  j )  C_  ( ( i  e. 
om  |->  1o ) `  j )
22 fveq1 5553 . . . . 5  |-  ( f  =  ( i  e. 
om  |->  1o )  -> 
( f `  suc  j )  =  ( ( i  e.  om  |->  1o ) `  suc  j
) )
23 fveq1 5553 . . . . 5  |-  ( f  =  ( i  e. 
om  |->  1o )  -> 
( f `  j
)  =  ( ( i  e.  om  |->  1o ) `  j ) )
2422, 23sseq12d 3210 . . . 4  |-  ( f  =  ( i  e. 
om  |->  1o )  -> 
( ( f `  suc  j )  C_  (
f `  j )  <->  ( ( i  e.  om  |->  1o ) `  suc  j
)  C_  ( (
i  e.  om  |->  1o ) `  j ) ) )
2524ralbidv 2494 . . 3  |-  ( f  =  ( i  e. 
om  |->  1o )  -> 
( A. j  e. 
om  ( f `  suc  j )  C_  (
f `  j )  <->  A. j  e.  om  (
( i  e.  om  |->  1o ) `  suc  j
)  C_  ( (
i  e.  om  |->  1o ) `  j ) ) )
26 df-nninf 7179 . . 3  |-  =  { f  e.  ( 2o  ^m  om )  |  A. j  e.  om  ( f `  suc  j )  C_  (
f `  j ) }
2725, 26elrab2 2919 . 2  |-  ( ( i  e.  om  |->  1o )  e.  <-> 
( ( i  e. 
om  |->  1o )  e.  ( 2o  ^m  om )  /\  A. j  e. 
om  ( ( i  e.  om  |->  1o ) `
 suc  j )  C_  ( ( i  e. 
om  |->  1o ) `  j ) ) )
289, 21, 27mpbir2an 944 1  |-  ( i  e.  om  |->  1o )  e.
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   T. wtru 1365    e. wcel 2164   A.wral 2472   _Vcvv 2760    C_ wss 3153    |-> cmpt 4090   Oncon0 4394   suc csuc 4396   omcom 4622   -->wf 5250   ` cfv 5254  (class class class)co 5918   1oc1o 6462   2oc2o 6463    ^m cmap 6702  ℕxnninf 7178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1o 6469  df-2o 6470  df-map 6704  df-nninf 7179
This theorem is referenced by:  nnnninf2  7186  nninfwlpoimlemdc  7236  nninfct  12178  nninffeq  15510  nnnninfen  15511
  Copyright terms: Public domain W3C validator