ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infnninf Unicode version

Theorem infnninf 7199
Description: The point at infinity in ℕ is the constant sequence equal to  1o. Note that with our encoding of functions, that constant function can also be expressed as  ( om  X.  { 1o } ), as fconstmpt 4711 shows. (Contributed by Jim Kingdon, 14-Jul-2022.) Use maps-to notation. (Revised by BJ, 10-Aug-2024.)
Assertion
Ref Expression
infnninf  |-  ( i  e.  om  |->  1o )  e.

Proof of Theorem infnninf
Dummy variables  f  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2o 6509 . . . . . 6  |-  1o  e.  2o
21a1i 9 . . . . 5  |-  ( ( T.  /\  i  e. 
om )  ->  1o  e.  2o )
32fmpttd 5720 . . . 4  |-  ( T. 
->  ( i  e.  om  |->  1o ) : om --> 2o )
43mptru 1373 . . 3  |-  ( i  e.  om  |->  1o ) : om --> 2o
5 2on 6492 . . . 4  |-  2o  e.  On
6 omex 4630 . . . 4  |-  om  e.  _V
7 elmapg 6729 . . . 4  |-  ( ( 2o  e.  On  /\  om  e.  _V )  -> 
( ( i  e. 
om  |->  1o )  e.  ( 2o  ^m  om ) 
<->  ( i  e.  om  |->  1o ) : om --> 2o ) )
85, 6, 7mp2an 426 . . 3  |-  ( ( i  e.  om  |->  1o )  e.  ( 2o 
^m  om )  <->  ( i  e.  om  |->  1o ) : om --> 2o )
94, 8mpbir 146 . 2  |-  ( i  e.  om  |->  1o )  e.  ( 2o  ^m  om )
10 peano2 4632 . . . . . 6  |-  ( j  e.  om  ->  suc  j  e.  om )
11 eqidd 2197 . . . . . . 7  |-  ( i  =  suc  j  ->  1o  =  1o )
12 eqid 2196 . . . . . . 7  |-  ( i  e.  om  |->  1o )  =  ( i  e. 
om  |->  1o )
13 1oex 6491 . . . . . . 7  |-  1o  e.  _V
1411, 12, 13fvmpt 5641 . . . . . 6  |-  ( suc  j  e.  om  ->  ( ( i  e.  om  |->  1o ) `  suc  j
)  =  1o )
1510, 14syl 14 . . . . 5  |-  ( j  e.  om  ->  (
( i  e.  om  |->  1o ) `  suc  j
)  =  1o )
16 eqidd 2197 . . . . . 6  |-  ( i  =  j  ->  1o  =  1o )
1716, 12, 13fvmpt 5641 . . . . 5  |-  ( j  e.  om  ->  (
( i  e.  om  |->  1o ) `  j )  =  1o )
1815, 17eqtr4d 2232 . . . 4  |-  ( j  e.  om  ->  (
( i  e.  om  |->  1o ) `  suc  j
)  =  ( ( i  e.  om  |->  1o ) `  j ) )
19 eqimss 3238 . . . 4  |-  ( ( ( i  e.  om  |->  1o ) `  suc  j
)  =  ( ( i  e.  om  |->  1o ) `  j )  ->  ( ( i  e.  om  |->  1o ) `
 suc  j )  C_  ( ( i  e. 
om  |->  1o ) `  j ) )
2018, 19syl 14 . . 3  |-  ( j  e.  om  ->  (
( i  e.  om  |->  1o ) `  suc  j
)  C_  ( (
i  e.  om  |->  1o ) `  j ) )
2120rgen 2550 . 2  |-  A. j  e.  om  ( ( i  e.  om  |->  1o ) `
 suc  j )  C_  ( ( i  e. 
om  |->  1o ) `  j )
22 fveq1 5560 . . . . 5  |-  ( f  =  ( i  e. 
om  |->  1o )  -> 
( f `  suc  j )  =  ( ( i  e.  om  |->  1o ) `  suc  j
) )
23 fveq1 5560 . . . . 5  |-  ( f  =  ( i  e. 
om  |->  1o )  -> 
( f `  j
)  =  ( ( i  e.  om  |->  1o ) `  j ) )
2422, 23sseq12d 3215 . . . 4  |-  ( f  =  ( i  e. 
om  |->  1o )  -> 
( ( f `  suc  j )  C_  (
f `  j )  <->  ( ( i  e.  om  |->  1o ) `  suc  j
)  C_  ( (
i  e.  om  |->  1o ) `  j ) ) )
2524ralbidv 2497 . . 3  |-  ( f  =  ( i  e. 
om  |->  1o )  -> 
( A. j  e. 
om  ( f `  suc  j )  C_  (
f `  j )  <->  A. j  e.  om  (
( i  e.  om  |->  1o ) `  suc  j
)  C_  ( (
i  e.  om  |->  1o ) `  j ) ) )
26 df-nninf 7195 . . 3  |-  =  { f  e.  ( 2o  ^m  om )  |  A. j  e.  om  ( f `  suc  j )  C_  (
f `  j ) }
2725, 26elrab2 2923 . 2  |-  ( ( i  e.  om  |->  1o )  e.  <-> 
( ( i  e. 
om  |->  1o )  e.  ( 2o  ^m  om )  /\  A. j  e. 
om  ( ( i  e.  om  |->  1o ) `
 suc  j )  C_  ( ( i  e. 
om  |->  1o ) `  j ) ) )
289, 21, 27mpbir2an 944 1  |-  ( i  e.  om  |->  1o )  e.
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   T. wtru 1365    e. wcel 2167   A.wral 2475   _Vcvv 2763    C_ wss 3157    |-> cmpt 4095   Oncon0 4399   suc csuc 4401   omcom 4627   -->wf 5255   ` cfv 5259  (class class class)co 5925   1oc1o 6476   2oc2o 6477    ^m cmap 6716  ℕxnninf 7194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1o 6483  df-2o 6484  df-map 6718  df-nninf 7195
This theorem is referenced by:  nnnninf2  7202  nninfwlpoimlemdc  7252  nninfct  12233  nninffeq  15751  nnnninfen  15752
  Copyright terms: Public domain W3C validator