| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elixp2 | Unicode version | ||
| Description: Membership in an infinite Cartesian product. See df-ixp 6785 for discussion of the notation. (Contributed by NM, 28-Sep-2006.) |
| Ref | Expression |
|---|---|
| elixp2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 5361 |
. . . . 5
| |
| 2 | fveq1 5574 |
. . . . . . 7
| |
| 3 | 2 | eleq1d 2273 |
. . . . . 6
|
| 4 | 3 | ralbidv 2505 |
. . . . 5
|
| 5 | 1, 4 | anbi12d 473 |
. . . 4
|
| 6 | dfixp 6786 |
. . . 4
| |
| 7 | 5, 6 | elab2g 2919 |
. . 3
|
| 8 | 7 | pm5.32i 454 |
. 2
|
| 9 | elex 2782 |
. . 3
| |
| 10 | 9 | pm4.71ri 392 |
. 2
|
| 11 | 3anass 984 |
. 2
| |
| 12 | 8, 10, 11 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-ixp 6785 |
| This theorem is referenced by: fvixp 6789 ixpfn 6790 elixp 6791 ixpf 6806 resixp 6819 mptelixpg 6820 prdsbasprj 13085 xpsfrnel 13147 xpscf 13150 |
| Copyright terms: Public domain | W3C validator |