| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elixp2 | Unicode version | ||
| Description: Membership in an infinite Cartesian product. See df-ixp 6786 for discussion of the notation. (Contributed by NM, 28-Sep-2006.) |
| Ref | Expression |
|---|---|
| elixp2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 5362 |
. . . . 5
| |
| 2 | fveq1 5575 |
. . . . . . 7
| |
| 3 | 2 | eleq1d 2274 |
. . . . . 6
|
| 4 | 3 | ralbidv 2506 |
. . . . 5
|
| 5 | 1, 4 | anbi12d 473 |
. . . 4
|
| 6 | dfixp 6787 |
. . . 4
| |
| 7 | 5, 6 | elab2g 2920 |
. . 3
|
| 8 | 7 | pm5.32i 454 |
. 2
|
| 9 | elex 2783 |
. . 3
| |
| 10 | 9 | pm4.71ri 392 |
. 2
|
| 11 | 3anass 985 |
. 2
| |
| 12 | 8, 10, 11 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ixp 6786 |
| This theorem is referenced by: fvixp 6790 ixpfn 6791 elixp 6792 ixpf 6807 resixp 6820 mptelixpg 6821 prdsbasprj 13114 xpsfrnel 13176 xpscf 13179 |
| Copyright terms: Public domain | W3C validator |