Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elixp2 | Unicode version |
Description: Membership in an infinite Cartesian product. See df-ixp 6677 for discussion of the notation. (Contributed by NM, 28-Sep-2006.) |
Ref | Expression |
---|---|
elixp2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1 5286 | . . . . 5 | |
2 | fveq1 5495 | . . . . . . 7 | |
3 | 2 | eleq1d 2239 | . . . . . 6 |
4 | 3 | ralbidv 2470 | . . . . 5 |
5 | 1, 4 | anbi12d 470 | . . . 4 |
6 | dfixp 6678 | . . . 4 | |
7 | 5, 6 | elab2g 2877 | . . 3 |
8 | 7 | pm5.32i 451 | . 2 |
9 | elex 2741 | . . 3 | |
10 | 9 | pm4.71ri 390 | . 2 |
11 | 3anass 977 | . 2 | |
12 | 8, 10, 11 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 cvv 2730 wfn 5193 cfv 5198 cixp 6676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-ixp 6677 |
This theorem is referenced by: fvixp 6681 ixpfn 6682 elixp 6683 ixpf 6698 resixp 6711 mptelixpg 6712 |
Copyright terms: Public domain | W3C validator |