ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elixp2 Unicode version

Theorem elixp2 6758
Description: Membership in an infinite Cartesian product. See df-ixp 6755 for discussion of the notation. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
elixp2  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    B( x)

Proof of Theorem elixp2
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fneq1 5343 . . . . 5  |-  ( f  =  F  ->  (
f  Fn  A  <->  F  Fn  A ) )
2 fveq1 5554 . . . . . . 7  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
32eleq1d 2262 . . . . . 6  |-  ( f  =  F  ->  (
( f `  x
)  e.  B  <->  ( F `  x )  e.  B
) )
43ralbidv 2494 . . . . 5  |-  ( f  =  F  ->  ( A. x  e.  A  ( f `  x
)  e.  B  <->  A. x  e.  A  ( F `  x )  e.  B
) )
51, 4anbi12d 473 . . . 4  |-  ( f  =  F  ->  (
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B )  <-> 
( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) ) )
6 dfixp 6756 . . . 4  |-  X_ x  e.  A  B  =  { f  |  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B ) }
75, 6elab2g 2908 . . 3  |-  ( F  e.  _V  ->  ( F  e.  X_ x  e.  A  B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) ) )
87pm5.32i 454 . 2  |-  ( ( F  e.  _V  /\  F  e.  X_ x  e.  A  B )  <->  ( F  e.  _V  /\  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) ) )
9 elex 2771 . . 3  |-  ( F  e.  X_ x  e.  A  B  ->  F  e.  _V )
109pm4.71ri 392 . 2  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  e.  X_ x  e.  A  B )
)
11 3anass 984 . 2  |-  ( ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  <->  ( F  e.  _V  /\  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) ) )
128, 10, 113bitr4i 212 1  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    Fn wfn 5250   ` cfv 5255   X_cixp 6754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ixp 6755
This theorem is referenced by:  fvixp  6759  ixpfn  6760  elixp  6761  ixpf  6776  resixp  6789  mptelixpg  6790  xpsfrnel  12930  xpscf  12933
  Copyright terms: Public domain W3C validator