ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elixp2 Unicode version

Theorem elixp2 6704
Description: Membership in an infinite Cartesian product. See df-ixp 6701 for discussion of the notation. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
elixp2  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    B( x)

Proof of Theorem elixp2
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fneq1 5306 . . . . 5  |-  ( f  =  F  ->  (
f  Fn  A  <->  F  Fn  A ) )
2 fveq1 5516 . . . . . . 7  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
32eleq1d 2246 . . . . . 6  |-  ( f  =  F  ->  (
( f `  x
)  e.  B  <->  ( F `  x )  e.  B
) )
43ralbidv 2477 . . . . 5  |-  ( f  =  F  ->  ( A. x  e.  A  ( f `  x
)  e.  B  <->  A. x  e.  A  ( F `  x )  e.  B
) )
51, 4anbi12d 473 . . . 4  |-  ( f  =  F  ->  (
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B )  <-> 
( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) ) )
6 dfixp 6702 . . . 4  |-  X_ x  e.  A  B  =  { f  |  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B ) }
75, 6elab2g 2886 . . 3  |-  ( F  e.  _V  ->  ( F  e.  X_ x  e.  A  B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) ) )
87pm5.32i 454 . 2  |-  ( ( F  e.  _V  /\  F  e.  X_ x  e.  A  B )  <->  ( F  e.  _V  /\  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) ) )
9 elex 2750 . . 3  |-  ( F  e.  X_ x  e.  A  B  ->  F  e.  _V )
109pm4.71ri 392 . 2  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  e.  X_ x  e.  A  B )
)
11 3anass 982 . 2  |-  ( ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B )  <->  ( F  e.  _V  /\  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) ) )
128, 10, 113bitr4i 212 1  |-  ( F  e.  X_ x  e.  A  B 
<->  ( F  e.  _V  /\  F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2739    Fn wfn 5213   ` cfv 5218   X_cixp 6700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ixp 6701
This theorem is referenced by:  fvixp  6705  ixpfn  6706  elixp  6707  ixpf  6722  resixp  6735  mptelixpg  6736  xpsfrnel  12768  xpscf  12771
  Copyright terms: Public domain W3C validator