| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elixp2 | Unicode version | ||
| Description: Membership in an infinite Cartesian product. See df-ixp 6758 for discussion of the notation. (Contributed by NM, 28-Sep-2006.) |
| Ref | Expression |
|---|---|
| elixp2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq1 5346 |
. . . . 5
| |
| 2 | fveq1 5557 |
. . . . . . 7
| |
| 3 | 2 | eleq1d 2265 |
. . . . . 6
|
| 4 | 3 | ralbidv 2497 |
. . . . 5
|
| 5 | 1, 4 | anbi12d 473 |
. . . 4
|
| 6 | dfixp 6759 |
. . . 4
| |
| 7 | 5, 6 | elab2g 2911 |
. . 3
|
| 8 | 7 | pm5.32i 454 |
. 2
|
| 9 | elex 2774 |
. . 3
| |
| 10 | 9 | pm4.71ri 392 |
. 2
|
| 11 | 3anass 984 |
. 2
| |
| 12 | 8, 10, 11 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ixp 6758 |
| This theorem is referenced by: fvixp 6762 ixpfn 6763 elixp 6764 ixpf 6779 resixp 6792 mptelixpg 6793 xpsfrnel 12987 xpscf 12990 |
| Copyright terms: Public domain | W3C validator |