ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpsnval Unicode version

Theorem ixpsnval 6718
Description: The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.)
Assertion
Ref Expression
ixpsnval  |-  ( X  e.  V  ->  X_ x  e.  { X } B  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  [_ X  /  x ]_ B
) } )
Distinct variable groups:    B, f    f, V    f, X, x
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem ixpsnval
StepHypRef Expression
1 dfixp 6717 . 2  |-  X_ x  e.  { X } B  =  { f  |  ( f  Fn  { X }  /\  A. x  e. 
{ X }  (
f `  x )  e.  B ) }
2 ralsnsg 3643 . . . . 5  |-  ( X  e.  V  ->  ( A. x  e.  { X }  ( f `  x )  e.  B  <->  [. X  /  x ]. ( f `  x
)  e.  B ) )
3 sbcel12g 3086 . . . . 5  |-  ( X  e.  V  ->  ( [. X  /  x ]. ( f `  x
)  e.  B  <->  [_ X  /  x ]_ ( f `  x )  e.  [_ X  /  x ]_ B
) )
4 csbfvg 5568 . . . . . 6  |-  ( X  e.  V  ->  [_ X  /  x ]_ ( f `
 x )  =  ( f `  X
) )
54eleq1d 2257 . . . . 5  |-  ( X  e.  V  ->  ( [_ X  /  x ]_ ( f `  x
)  e.  [_ X  /  x ]_ B  <->  ( f `  X )  e.  [_ X  /  x ]_ B
) )
62, 3, 53bitrd 214 . . . 4  |-  ( X  e.  V  ->  ( A. x  e.  { X }  ( f `  x )  e.  B  <->  ( f `  X )  e.  [_ X  /  x ]_ B ) )
76anbi2d 464 . . 3  |-  ( X  e.  V  ->  (
( f  Fn  { X }  /\  A. x  e.  { X }  (
f `  x )  e.  B )  <->  ( f  Fn  { X }  /\  ( f `  X
)  e.  [_ X  /  x ]_ B ) ) )
87abbidv 2306 . 2  |-  ( X  e.  V  ->  { f  |  ( f  Fn 
{ X }  /\  A. x  e.  { X }  ( f `  x )  e.  B
) }  =  {
f  |  ( f  Fn  { X }  /\  ( f `  X
)  e.  [_ X  /  x ]_ B ) } )
91, 8eqtrid 2233 1  |-  ( X  e.  V  ->  X_ x  e.  { X } B  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  [_ X  /  x ]_ B
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2159   {cab 2174   A.wral 2467   [.wsbc 2976   [_csb 3071   {csn 3606    Fn wfn 5225   ` cfv 5230   X_cixp 6715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-rex 2473  df-v 2753  df-sbc 2977  df-csb 3072  df-un 3147  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-br 4018  df-iota 5192  df-fn 5233  df-fv 5238  df-ixp 6716
This theorem is referenced by:  ixpsnbasval  13742
  Copyright terms: Public domain W3C validator