ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpsnval Unicode version

Theorem ixpsnval 6788
Description: The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.)
Assertion
Ref Expression
ixpsnval  |-  ( X  e.  V  ->  X_ x  e.  { X } B  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  [_ X  /  x ]_ B
) } )
Distinct variable groups:    B, f    f, V    f, X, x
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem ixpsnval
StepHypRef Expression
1 dfixp 6787 . 2  |-  X_ x  e.  { X } B  =  { f  |  ( f  Fn  { X }  /\  A. x  e. 
{ X }  (
f `  x )  e.  B ) }
2 ralsnsg 3670 . . . . 5  |-  ( X  e.  V  ->  ( A. x  e.  { X }  ( f `  x )  e.  B  <->  [. X  /  x ]. ( f `  x
)  e.  B ) )
3 sbcel12g 3108 . . . . 5  |-  ( X  e.  V  ->  ( [. X  /  x ]. ( f `  x
)  e.  B  <->  [_ X  /  x ]_ ( f `  x )  e.  [_ X  /  x ]_ B
) )
4 csbfvg 5616 . . . . . 6  |-  ( X  e.  V  ->  [_ X  /  x ]_ ( f `
 x )  =  ( f `  X
) )
54eleq1d 2274 . . . . 5  |-  ( X  e.  V  ->  ( [_ X  /  x ]_ ( f `  x
)  e.  [_ X  /  x ]_ B  <->  ( f `  X )  e.  [_ X  /  x ]_ B
) )
62, 3, 53bitrd 214 . . . 4  |-  ( X  e.  V  ->  ( A. x  e.  { X }  ( f `  x )  e.  B  <->  ( f `  X )  e.  [_ X  /  x ]_ B ) )
76anbi2d 464 . . 3  |-  ( X  e.  V  ->  (
( f  Fn  { X }  /\  A. x  e.  { X }  (
f `  x )  e.  B )  <->  ( f  Fn  { X }  /\  ( f `  X
)  e.  [_ X  /  x ]_ B ) ) )
87abbidv 2323 . 2  |-  ( X  e.  V  ->  { f  |  ( f  Fn 
{ X }  /\  A. x  e.  { X }  ( f `  x )  e.  B
) }  =  {
f  |  ( f  Fn  { X }  /\  ( f `  X
)  e.  [_ X  /  x ]_ B ) } )
91, 8eqtrid 2250 1  |-  ( X  e.  V  ->  X_ x  e.  { X } B  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  [_ X  /  x ]_ B
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   [.wsbc 2998   [_csb 3093   {csn 3633    Fn wfn 5266   ` cfv 5271   X_cixp 6785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fn 5274  df-fv 5279  df-ixp 6786
This theorem is referenced by:  ixpsnbasval  14228
  Copyright terms: Public domain W3C validator