ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpsnval Unicode version

Theorem ixpsnval 6760
Description: The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.)
Assertion
Ref Expression
ixpsnval  |-  ( X  e.  V  ->  X_ x  e.  { X } B  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  [_ X  /  x ]_ B
) } )
Distinct variable groups:    B, f    f, V    f, X, x
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem ixpsnval
StepHypRef Expression
1 dfixp 6759 . 2  |-  X_ x  e.  { X } B  =  { f  |  ( f  Fn  { X }  /\  A. x  e. 
{ X }  (
f `  x )  e.  B ) }
2 ralsnsg 3659 . . . . 5  |-  ( X  e.  V  ->  ( A. x  e.  { X }  ( f `  x )  e.  B  <->  [. X  /  x ]. ( f `  x
)  e.  B ) )
3 sbcel12g 3099 . . . . 5  |-  ( X  e.  V  ->  ( [. X  /  x ]. ( f `  x
)  e.  B  <->  [_ X  /  x ]_ ( f `  x )  e.  [_ X  /  x ]_ B
) )
4 csbfvg 5598 . . . . . 6  |-  ( X  e.  V  ->  [_ X  /  x ]_ ( f `
 x )  =  ( f `  X
) )
54eleq1d 2265 . . . . 5  |-  ( X  e.  V  ->  ( [_ X  /  x ]_ ( f `  x
)  e.  [_ X  /  x ]_ B  <->  ( f `  X )  e.  [_ X  /  x ]_ B
) )
62, 3, 53bitrd 214 . . . 4  |-  ( X  e.  V  ->  ( A. x  e.  { X }  ( f `  x )  e.  B  <->  ( f `  X )  e.  [_ X  /  x ]_ B ) )
76anbi2d 464 . . 3  |-  ( X  e.  V  ->  (
( f  Fn  { X }  /\  A. x  e.  { X }  (
f `  x )  e.  B )  <->  ( f  Fn  { X }  /\  ( f `  X
)  e.  [_ X  /  x ]_ B ) ) )
87abbidv 2314 . 2  |-  ( X  e.  V  ->  { f  |  ( f  Fn 
{ X }  /\  A. x  e.  { X }  ( f `  x )  e.  B
) }  =  {
f  |  ( f  Fn  { X }  /\  ( f `  X
)  e.  [_ X  /  x ]_ B ) } )
91, 8eqtrid 2241 1  |-  ( X  e.  V  ->  X_ x  e.  { X } B  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  [_ X  /  x ]_ B
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   [.wsbc 2989   [_csb 3084   {csn 3622    Fn wfn 5253   ` cfv 5258   X_cixp 6757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fn 5261  df-fv 5266  df-ixp 6758
This theorem is referenced by:  ixpsnbasval  14022
  Copyright terms: Public domain W3C validator