ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpeq1 Unicode version

Theorem ixpeq1 6675
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
ixpeq1  |-  ( A  =  B  ->  X_ x  e.  A  C  =  X_ x  e.  B  C
)
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem ixpeq1
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 fneq2 5277 . . . 4  |-  ( A  =  B  ->  (
f  Fn  A  <->  f  Fn  B ) )
2 raleq 2661 . . . 4  |-  ( A  =  B  ->  ( A. x  e.  A  ( f `  x
)  e.  C  <->  A. x  e.  B  ( f `  x )  e.  C
) )
31, 2anbi12d 465 . . 3  |-  ( A  =  B  ->  (
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C )  <-> 
( f  Fn  B  /\  A. x  e.  B  ( f `  x
)  e.  C ) ) )
43abbidv 2284 . 2  |-  ( A  =  B  ->  { f  |  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C
) }  =  {
f  |  ( f  Fn  B  /\  A. x  e.  B  (
f `  x )  e.  C ) } )
5 dfixp 6666 . 2  |-  X_ x  e.  A  C  =  { f  |  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C ) }
6 dfixp 6666 . 2  |-  X_ x  e.  B  C  =  { f  |  ( f  Fn  B  /\  A. x  e.  B  ( f `  x )  e.  C ) }
74, 5, 63eqtr4g 2224 1  |-  ( A  =  B  ->  X_ x  e.  A  C  =  X_ x  e.  B  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444    Fn wfn 5183   ` cfv 5188   X_cixp 6664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-fn 5191  df-ixp 6665
This theorem is referenced by:  ixpeq1d  6676
  Copyright terms: Public domain W3C validator