ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difabs Unicode version

Theorem difabs 3391
Description: Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.)
Assertion
Ref Expression
difabs  |-  ( ( A  \  B ) 
\  B )  =  ( A  \  B
)

Proof of Theorem difabs
StepHypRef Expression
1 difun1 3387 . 2  |-  ( A 
\  ( B  u.  B ) )  =  ( ( A  \  B )  \  B
)
2 unidm 3270 . . 3  |-  ( B  u.  B )  =  B
32difeq2i 3242 . 2  |-  ( A 
\  ( B  u.  B ) )  =  ( A  \  B
)
41, 3eqtr3i 2193 1  |-  ( ( A  \  B ) 
\  B )  =  ( A  \  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1348    \ cdif 3118    u. cun 3119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator