ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difabs Unicode version

Theorem difabs 3441
Description: Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.)
Assertion
Ref Expression
difabs  |-  ( ( A  \  B ) 
\  B )  =  ( A  \  B
)

Proof of Theorem difabs
StepHypRef Expression
1 difun1 3437 . 2  |-  ( A 
\  ( B  u.  B ) )  =  ( ( A  \  B )  \  B
)
2 unidm 3320 . . 3  |-  ( B  u.  B )  =  B
32difeq2i 3292 . 2  |-  ( A 
\  ( B  u.  B ) )  =  ( A  \  B
)
41, 3eqtr3i 2229 1  |-  ( ( A  \  B ) 
\  B )  =  ( A  \  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    \ cdif 3167    u. cun 3168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator