ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difabs Unicode version

Theorem difabs 3428
Description: Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.)
Assertion
Ref Expression
difabs  |-  ( ( A  \  B ) 
\  B )  =  ( A  \  B
)

Proof of Theorem difabs
StepHypRef Expression
1 difun1 3424 . 2  |-  ( A 
\  ( B  u.  B ) )  =  ( ( A  \  B )  \  B
)
2 unidm 3307 . . 3  |-  ( B  u.  B )  =  B
32difeq2i 3279 . 2  |-  ( A 
\  ( B  u.  B ) )  =  ( A  \  B
)
41, 3eqtr3i 2219 1  |-  ( ( A  \  B ) 
\  B )  =  ( A  \  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    \ cdif 3154    u. cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator