ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq2i Unicode version

Theorem difeq2i 3288
Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
Hypothesis
Ref Expression
difeq1i.1  |-  A  =  B
Assertion
Ref Expression
difeq2i  |-  ( C 
\  A )  =  ( C  \  B
)

Proof of Theorem difeq2i
StepHypRef Expression
1 difeq1i.1 . 2  |-  A  =  B
2 difeq2 3285 . 2  |-  ( A  =  B  ->  ( C  \  A )  =  ( C  \  B
) )
31, 2ax-mp 5 1  |-  ( C 
\  A )  =  ( C  \  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    \ cdif 3163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-ral 2489  df-rab 2493  df-dif 3168
This theorem is referenced by:  difeq12i  3289  inssddif  3414  difdif2ss  3430  dif32  3436  difabs  3437  symdif1  3438  notrab  3450  dif0  3531  difdifdirss  3545  dfif3  3584  difpr  3775  dif1o  6524  unfiin  7023  m1bits  12271
  Copyright terms: Public domain W3C validator