ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  symdif1 Unicode version

Theorem symdif1 3401
Description: Two ways to express symmetric difference. This theorem shows the equivalence of the definition of symmetric difference in [Stoll] p. 13 and the restated definition in Example 4.1 of [Stoll] p. 262. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
symdif1  |-  ( ( A  \  B )  u.  ( B  \  A ) )  =  ( ( A  u.  B )  \  ( A  i^i  B ) )

Proof of Theorem symdif1
StepHypRef Expression
1 difundir 3389 . 2  |-  ( ( A  u.  B ) 
\  ( A  i^i  B ) )  =  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )
2 difin 3373 . . 3  |-  ( A 
\  ( A  i^i  B ) )  =  ( A  \  B )
3 incom 3328 . . . . 5  |-  ( A  i^i  B )  =  ( B  i^i  A
)
43difeq2i 3251 . . . 4  |-  ( B 
\  ( A  i^i  B ) )  =  ( B  \  ( B  i^i  A ) )
5 difin 3373 . . . 4  |-  ( B 
\  ( B  i^i  A ) )  =  ( B  \  A )
64, 5eqtri 2198 . . 3  |-  ( B 
\  ( A  i^i  B ) )  =  ( B  \  A )
72, 6uneq12i 3288 . 2  |-  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )  =  ( ( A  \  B )  u.  ( B  \  A ) )
81, 7eqtr2i 2199 1  |-  ( ( A  \  B )  u.  ( B  \  A ) )  =  ( ( A  u.  B )  \  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1353    \ cdif 3127    u. cun 3128    i^i cin 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rab 2464  df-v 2740  df-dif 3132  df-un 3134  df-in 3136
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator