ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  symdif1 Unicode version

Theorem symdif1 3280
Description: Two ways to express symmetric difference. This theorem shows the equivalence of the definition of symmetric difference in [Stoll] p. 13 and the restated definition in Example 4.1 of [Stoll] p. 262. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
symdif1  |-  ( ( A  \  B )  u.  ( B  \  A ) )  =  ( ( A  u.  B )  \  ( A  i^i  B ) )

Proof of Theorem symdif1
StepHypRef Expression
1 difundir 3268 . 2  |-  ( ( A  u.  B ) 
\  ( A  i^i  B ) )  =  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )
2 difin 3252 . . 3  |-  ( A 
\  ( A  i^i  B ) )  =  ( A  \  B )
3 incom 3207 . . . . 5  |-  ( A  i^i  B )  =  ( B  i^i  A
)
43difeq2i 3130 . . . 4  |-  ( B 
\  ( A  i^i  B ) )  =  ( B  \  ( B  i^i  A ) )
5 difin 3252 . . . 4  |-  ( B 
\  ( B  i^i  A ) )  =  ( B  \  A )
64, 5eqtri 2115 . . 3  |-  ( B 
\  ( A  i^i  B ) )  =  ( B  \  A )
72, 6uneq12i 3167 . 2  |-  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )  =  ( ( A  \  B )  u.  ( B  \  A ) )
81, 7eqtr2i 2116 1  |-  ( ( A  \  B )  u.  ( B  \  A ) )  =  ( ( A  u.  B )  \  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1296    \ cdif 3010    u. cun 3011    i^i cin 3012
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rab 2379  df-v 2635  df-dif 3015  df-un 3017  df-in 3019
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator