ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif32 Unicode version

Theorem dif32 3400
Description: Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.)
Assertion
Ref Expression
dif32  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  \  B
)

Proof of Theorem dif32
StepHypRef Expression
1 uncom 3281 . . 3  |-  ( B  u.  C )  =  ( C  u.  B
)
21difeq2i 3252 . 2  |-  ( A 
\  ( B  u.  C ) )  =  ( A  \  ( C  u.  B )
)
3 difun1 3397 . 2  |-  ( A 
\  ( B  u.  C ) )  =  ( ( A  \  B )  \  C
)
4 difun1 3397 . 2  |-  ( A 
\  ( C  u.  B ) )  =  ( ( A  \  C )  \  B
)
52, 3, 43eqtr3i 2206 1  |-  ( ( A  \  B ) 
\  C )  =  ( ( A  \  C )  \  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1353    \ cdif 3128    u. cun 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137
This theorem is referenced by:  difdifdirss  3509
  Copyright terms: Public domain W3C validator