ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq12i Unicode version

Theorem difeq12i 3237
Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004.)
Hypotheses
Ref Expression
difeq1i.1  |-  A  =  B
difeq12i.2  |-  C  =  D
Assertion
Ref Expression
difeq12i  |-  ( A 
\  C )  =  ( B  \  D
)

Proof of Theorem difeq12i
StepHypRef Expression
1 difeq1i.1 . . 3  |-  A  =  B
21difeq1i 3235 . 2  |-  ( A 
\  C )  =  ( B  \  C
)
3 difeq12i.2 . . 3  |-  C  =  D
43difeq2i 3236 . 2  |-  ( B 
\  C )  =  ( B  \  D
)
52, 4eqtri 2186 1  |-  ( A 
\  C )  =  ( B  \  D
)
Colors of variables: wff set class
Syntax hints:    = wceq 1343    \ cdif 3112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-rab 2452  df-dif 3117
This theorem is referenced by:  difrab  3395  imadiflem  5266  imadif  5267
  Copyright terms: Public domain W3C validator