ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq12i Unicode version

Theorem difeq12i 3252
Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004.)
Hypotheses
Ref Expression
difeq1i.1  |-  A  =  B
difeq12i.2  |-  C  =  D
Assertion
Ref Expression
difeq12i  |-  ( A 
\  C )  =  ( B  \  D
)

Proof of Theorem difeq12i
StepHypRef Expression
1 difeq1i.1 . . 3  |-  A  =  B
21difeq1i 3250 . 2  |-  ( A 
\  C )  =  ( B  \  C
)
3 difeq12i.2 . . 3  |-  C  =  D
43difeq2i 3251 . 2  |-  ( B 
\  C )  =  ( B  \  D
)
52, 4eqtri 2198 1  |-  ( A 
\  C )  =  ( B  \  D
)
Colors of variables: wff set class
Syntax hints:    = wceq 1353    \ cdif 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rab 2464  df-dif 3132
This theorem is referenced by:  difrab  3410  imadiflem  5296  imadif  5297
  Copyright terms: Public domain W3C validator