| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difrab | Unicode version | ||
| Description: Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004.) |
| Ref | Expression |
|---|---|
| difrab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2517 |
. . 3
| |
| 2 | df-rab 2517 |
. . 3
| |
| 3 | 1, 2 | difeq12i 3320 |
. 2
|
| 4 | df-rab 2517 |
. . 3
| |
| 5 | difab 3473 |
. . . 4
| |
| 6 | anass 401 |
. . . . . 6
| |
| 7 | simpr 110 |
. . . . . . . . 9
| |
| 8 | 7 | con3i 635 |
. . . . . . . 8
|
| 9 | 8 | anim2i 342 |
. . . . . . 7
|
| 10 | pm3.2 139 |
. . . . . . . . . 10
| |
| 11 | 10 | adantr 276 |
. . . . . . . . 9
|
| 12 | 11 | con3d 634 |
. . . . . . . 8
|
| 13 | 12 | imdistani 445 |
. . . . . . 7
|
| 14 | 9, 13 | impbii 126 |
. . . . . 6
|
| 15 | 6, 14 | bitr3i 186 |
. . . . 5
|
| 16 | 15 | abbii 2345 |
. . . 4
|
| 17 | 5, 16 | eqtr4i 2253 |
. . 3
|
| 18 | 4, 17 | eqtr4i 2253 |
. 2
|
| 19 | 3, 18 | eqtr4i 2253 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-v 2801 df-dif 3199 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |