ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difrab Unicode version

Theorem difrab 3478
Description: Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
difrab  |-  ( { x  e.  A  |  ph }  \  { x  e.  A  |  ps } )  =  {
x  e.  A  | 
( ph  /\  -.  ps ) }

Proof of Theorem difrab
StepHypRef Expression
1 df-rab 2517 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 df-rab 2517 . . 3  |-  { x  e.  A  |  ps }  =  { x  |  ( x  e.  A  /\  ps ) }
31, 2difeq12i 3320 . 2  |-  ( { x  e.  A  |  ph }  \  { x  e.  A  |  ps } )  =  ( { x  |  ( x  e.  A  /\  ph ) }  \  {
x  |  ( x  e.  A  /\  ps ) } )
4 df-rab 2517 . . 3  |-  { x  e.  A  |  ( ph  /\  -.  ps ) }  =  { x  |  ( x  e.  A  /\  ( ph  /\ 
-.  ps ) ) }
5 difab 3473 . . . 4  |-  ( { x  |  ( x  e.  A  /\  ph ) }  \  { x  |  ( x  e.  A  /\  ps ) } )  =  {
x  |  ( ( x  e.  A  /\  ph )  /\  -.  (
x  e.  A  /\  ps ) ) }
6 anass 401 . . . . . 6  |-  ( ( ( x  e.  A  /\  ph )  /\  -.  ps )  <->  ( x  e.  A  /\  ( ph  /\ 
-.  ps ) ) )
7 simpr 110 . . . . . . . . 9  |-  ( ( x  e.  A  /\  ps )  ->  ps )
87con3i 635 . . . . . . . 8  |-  ( -. 
ps  ->  -.  ( x  e.  A  /\  ps )
)
98anim2i 342 . . . . . . 7  |-  ( ( ( x  e.  A  /\  ph )  /\  -.  ps )  ->  ( ( x  e.  A  /\  ph )  /\  -.  (
x  e.  A  /\  ps ) ) )
10 pm3.2 139 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( ps  ->  ( x  e.  A  /\  ps )
) )
1110adantr 276 . . . . . . . . 9  |-  ( ( x  e.  A  /\  ph )  ->  ( ps  ->  ( x  e.  A  /\  ps ) ) )
1211con3d 634 . . . . . . . 8  |-  ( ( x  e.  A  /\  ph )  ->  ( -.  ( x  e.  A  /\  ps )  ->  -.  ps ) )
1312imdistani 445 . . . . . . 7  |-  ( ( ( x  e.  A  /\  ph )  /\  -.  ( x  e.  A  /\  ps ) )  -> 
( ( x  e.  A  /\  ph )  /\  -.  ps ) )
149, 13impbii 126 . . . . . 6  |-  ( ( ( x  e.  A  /\  ph )  /\  -.  ps )  <->  ( ( x  e.  A  /\  ph )  /\  -.  ( x  e.  A  /\  ps ) ) )
156, 14bitr3i 186 . . . . 5  |-  ( ( x  e.  A  /\  ( ph  /\  -.  ps ) )  <->  ( (
x  e.  A  /\  ph )  /\  -.  (
x  e.  A  /\  ps ) ) )
1615abbii 2345 . . . 4  |-  { x  |  ( x  e.  A  /\  ( ph  /\ 
-.  ps ) ) }  =  { x  |  ( ( x  e.  A  /\  ph )  /\  -.  ( x  e.  A  /\  ps )
) }
175, 16eqtr4i 2253 . . 3  |-  ( { x  |  ( x  e.  A  /\  ph ) }  \  { x  |  ( x  e.  A  /\  ps ) } )  =  {
x  |  ( x  e.  A  /\  ( ph  /\  -.  ps )
) }
184, 17eqtr4i 2253 . 2  |-  { x  e.  A  |  ( ph  /\  -.  ps ) }  =  ( {
x  |  ( x  e.  A  /\  ph ) }  \  { x  |  ( x  e.  A  /\  ps ) } )
193, 18eqtr4i 2253 1  |-  ( { x  e.  A  |  ph }  \  { x  e.  A  |  ps } )  =  {
x  e.  A  | 
( ph  /\  -.  ps ) }
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {cab 2215   {crab 2512    \ cdif 3194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rab 2517  df-v 2801  df-dif 3199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator