ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difrab Unicode version

Theorem difrab 3396
Description: Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
difrab  |-  ( { x  e.  A  |  ph }  \  { x  e.  A  |  ps } )  =  {
x  e.  A  | 
( ph  /\  -.  ps ) }

Proof of Theorem difrab
StepHypRef Expression
1 df-rab 2453 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 df-rab 2453 . . 3  |-  { x  e.  A  |  ps }  =  { x  |  ( x  e.  A  /\  ps ) }
31, 2difeq12i 3238 . 2  |-  ( { x  e.  A  |  ph }  \  { x  e.  A  |  ps } )  =  ( { x  |  ( x  e.  A  /\  ph ) }  \  {
x  |  ( x  e.  A  /\  ps ) } )
4 df-rab 2453 . . 3  |-  { x  e.  A  |  ( ph  /\  -.  ps ) }  =  { x  |  ( x  e.  A  /\  ( ph  /\ 
-.  ps ) ) }
5 difab 3391 . . . 4  |-  ( { x  |  ( x  e.  A  /\  ph ) }  \  { x  |  ( x  e.  A  /\  ps ) } )  =  {
x  |  ( ( x  e.  A  /\  ph )  /\  -.  (
x  e.  A  /\  ps ) ) }
6 anass 399 . . . . . 6  |-  ( ( ( x  e.  A  /\  ph )  /\  -.  ps )  <->  ( x  e.  A  /\  ( ph  /\ 
-.  ps ) ) )
7 simpr 109 . . . . . . . . 9  |-  ( ( x  e.  A  /\  ps )  ->  ps )
87con3i 622 . . . . . . . 8  |-  ( -. 
ps  ->  -.  ( x  e.  A  /\  ps )
)
98anim2i 340 . . . . . . 7  |-  ( ( ( x  e.  A  /\  ph )  /\  -.  ps )  ->  ( ( x  e.  A  /\  ph )  /\  -.  (
x  e.  A  /\  ps ) ) )
10 pm3.2 138 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( ps  ->  ( x  e.  A  /\  ps )
) )
1110adantr 274 . . . . . . . . 9  |-  ( ( x  e.  A  /\  ph )  ->  ( ps  ->  ( x  e.  A  /\  ps ) ) )
1211con3d 621 . . . . . . . 8  |-  ( ( x  e.  A  /\  ph )  ->  ( -.  ( x  e.  A  /\  ps )  ->  -.  ps ) )
1312imdistani 442 . . . . . . 7  |-  ( ( ( x  e.  A  /\  ph )  /\  -.  ( x  e.  A  /\  ps ) )  -> 
( ( x  e.  A  /\  ph )  /\  -.  ps ) )
149, 13impbii 125 . . . . . 6  |-  ( ( ( x  e.  A  /\  ph )  /\  -.  ps )  <->  ( ( x  e.  A  /\  ph )  /\  -.  ( x  e.  A  /\  ps ) ) )
156, 14bitr3i 185 . . . . 5  |-  ( ( x  e.  A  /\  ( ph  /\  -.  ps ) )  <->  ( (
x  e.  A  /\  ph )  /\  -.  (
x  e.  A  /\  ps ) ) )
1615abbii 2282 . . . 4  |-  { x  |  ( x  e.  A  /\  ( ph  /\ 
-.  ps ) ) }  =  { x  |  ( ( x  e.  A  /\  ph )  /\  -.  ( x  e.  A  /\  ps )
) }
175, 16eqtr4i 2189 . . 3  |-  ( { x  |  ( x  e.  A  /\  ph ) }  \  { x  |  ( x  e.  A  /\  ps ) } )  =  {
x  |  ( x  e.  A  /\  ( ph  /\  -.  ps )
) }
184, 17eqtr4i 2189 . 2  |-  { x  e.  A  |  ( ph  /\  -.  ps ) }  =  ( {
x  |  ( x  e.  A  /\  ph ) }  \  { x  |  ( x  e.  A  /\  ps ) } )
193, 18eqtr4i 2189 1  |-  ( { x  e.  A  |  ph }  \  { x  e.  A  |  ps } )  =  {
x  e.  A  | 
( ph  /\  -.  ps ) }
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   {cab 2151   {crab 2448    \ cdif 3113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rab 2453  df-v 2728  df-dif 3118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator