Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > difeq12i | GIF version |
Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004.) |
Ref | Expression |
---|---|
difeq1i.1 | ⊢ 𝐴 = 𝐵 |
difeq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
difeq12i | ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1i.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
2 | 1 | difeq1i 3241 | . 2 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) |
3 | difeq12i.2 | . . 3 ⊢ 𝐶 = 𝐷 | |
4 | 3 | difeq2i 3242 | . 2 ⊢ (𝐵 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
5 | 2, 4 | eqtri 2191 | 1 ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∖ cdif 3118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rab 2457 df-dif 3123 |
This theorem is referenced by: difrab 3401 imadiflem 5277 imadif 5278 |
Copyright terms: Public domain | W3C validator |