![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > difeqri | GIF version |
Description: Inference from membership to difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeqri.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) |
Ref | Expression |
---|---|
difeqri | ⊢ (𝐴 ∖ 𝐵) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3140 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | difeqri.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) | |
3 | 1, 2 | bitri 184 | . 2 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ 𝑥 ∈ 𝐶) |
4 | 3 | eqriv 2174 | 1 ⊢ (𝐴 ∖ 𝐵) = 𝐶 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ∖ cdif 3128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-dif 3133 |
This theorem is referenced by: difdif 3262 ddifnel 3268 difab 3406 |
Copyright terms: Public domain | W3C validator |