ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disj1 Unicode version

Theorem disj1 3471
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
disj1  |-  ( ( A  i^i  B )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  B )
)
Distinct variable groups:    x, A    x, B

Proof of Theorem disj1
StepHypRef Expression
1 disj 3469 . 2  |-  ( ( A  i^i  B )  =  (/)  <->  A. x  e.  A  -.  x  e.  B
)
2 df-ral 2458 . 2  |-  ( A. x  e.  A  -.  x  e.  B  <->  A. x
( x  e.  A  ->  -.  x  e.  B
) )
31, 2bitri 184 1  |-  ( ( A  i^i  B )  =  (/)  <->  A. x ( x  e.  A  ->  -.  x  e.  B )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105   A.wal 1351    = wceq 1353    e. wcel 2146   A.wral 2453    i^i cin 3126   (/)c0 3420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-dif 3129  df-in 3133  df-nul 3421
This theorem is referenced by:  reldisj  3472  disj3  3473  undif4  3483  disjsn  3651  funun  5252  fzodisj  10148
  Copyright terms: Public domain W3C validator