ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disj1 GIF version

Theorem disj1 3501
Description: Two ways of saying that two classes are disjoint (have no members in common). (Contributed by NM, 19-Aug-1993.)
Assertion
Ref Expression
disj1 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disj1
StepHypRef Expression
1 disj 3499 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐴 ¬ 𝑥𝐵)
2 df-ral 2480 . 2 (∀𝑥𝐴 ¬ 𝑥𝐵 ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
31, 2bitri 184 1 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wal 1362   = wceq 1364  wcel 2167  wral 2475  cin 3156  c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-dif 3159  df-in 3163  df-nul 3451
This theorem is referenced by:  reldisj  3502  disj3  3503  undif4  3513  disjsn  3684  funun  5302  fzodisj  10254
  Copyright terms: Public domain W3C validator