ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difun2 Unicode version

Theorem difun2 3540
Description: Absorption of union by difference. Theorem 36 of [Suppes] p. 29. (Contributed by NM, 19-May-1998.)
Assertion
Ref Expression
difun2  |-  ( ( A  u.  B ) 
\  B )  =  ( A  \  B
)

Proof of Theorem difun2
StepHypRef Expression
1 difundir 3426 . 2  |-  ( ( A  u.  B ) 
\  B )  =  ( ( A  \  B )  u.  ( B  \  B ) )
2 difid 3529 . . 3  |-  ( B 
\  B )  =  (/)
32uneq2i 3324 . 2  |-  ( ( A  \  B )  u.  ( B  \  B ) )  =  ( ( A  \  B )  u.  (/) )
4 un0 3494 . 2  |-  ( ( A  \  B )  u.  (/) )  =  ( A  \  B )
51, 3, 43eqtri 2230 1  |-  ( ( A  u.  B ) 
\  B )  =  ( A  \  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1373    \ cdif 3163    u. cun 3164   (/)c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461
This theorem is referenced by:  uneqdifeqim  3546  difprsn1  3772  orddif  4596  fisseneq  7033  dfn2  9310
  Copyright terms: Public domain W3C validator