ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjdif2 GIF version

Theorem disjdif2 3529
Description: The difference of a class and a class disjoint from it is the original class. (Contributed by BJ, 21-Apr-2019.)
Assertion
Ref Expression
disjdif2 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)

Proof of Theorem disjdif2
StepHypRef Expression
1 difeq2 3275 . 2 ((𝐴𝐵) = ∅ → (𝐴 ∖ (𝐴𝐵)) = (𝐴 ∖ ∅))
2 difin 3400 . 2 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
3 dif0 3521 . 2 (𝐴 ∖ ∅) = 𝐴
41, 2, 33eqtr3g 2252 1 ((𝐴𝐵) = ∅ → (𝐴𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cdif 3154  cin 3156  c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rab 2484  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451
This theorem is referenced by:  setsfun0  12714
  Copyright terms: Public domain W3C validator