ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0disj Unicode version

Theorem 0disj 4056
Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
0disj  |- Disj  x  e.  A  (/)

Proof of Theorem 0disj
StepHypRef Expression
1 0ss 3507 . . 3  |-  (/)  C_  { x }
21rgenw 2563 . 2  |-  A. x  e.  A  (/)  C_  { x }
3 sndisj 4055 . 2  |- Disj  x  e.  A  { x }
4 disjss2 4038 . 2  |-  ( A. x  e.  A  (/)  C_  { x }  ->  (Disj  x  e.  A  { x }  -> Disj  x  e.  A  (/) ) )
52, 3, 4mp2 16 1  |- Disj  x  e.  A  (/)
Colors of variables: wff set class
Syntax hints:   A.wral 2486    C_ wss 3174   (/)c0 3468   {csn 3643  Disj wdisj 4035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rmo 2494  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-disj 4036
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator