ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djueq12 Unicode version

Theorem djueq12 7004
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djueq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A C )  =  ( B D ) )

Proof of Theorem djueq12
StepHypRef Expression
1 xpeq2 4619 . . . 4  |-  ( A  =  B  ->  ( { (/) }  X.  A
)  =  ( {
(/) }  X.  B
) )
21adantr 274 . . 3  |-  ( ( A  =  B  /\  C  =  D )  ->  ( { (/) }  X.  A )  =  ( { (/) }  X.  B
) )
3 xpeq2 4619 . . . 4  |-  ( C  =  D  ->  ( { 1o }  X.  C
)  =  ( { 1o }  X.  D
) )
43adantl 275 . . 3  |-  ( ( A  =  B  /\  C  =  D )  ->  ( { 1o }  X.  C )  =  ( { 1o }  X.  D ) )
52, 4uneq12d 3277 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  C ) )  =  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  D ) ) )
6 df-dju 7003 . 2  |-  ( A C )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  C
) )
7 df-dju 7003 . 2  |-  ( B D )  =  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  D
) )
85, 6, 73eqtr4g 2224 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A C )  =  ( B D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    u. cun 3114   (/)c0 3409   {csn 3576    X. cxp 4602   1oc1o 6377   ⊔ cdju 7002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-opab 4044  df-xp 4610  df-dju 7003
This theorem is referenced by:  djueq1  7005  djueq2  7006  casef  7053
  Copyright terms: Public domain W3C validator