ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djueq12 Unicode version

Theorem djueq12 7040
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djueq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A C )  =  ( B D ) )

Proof of Theorem djueq12
StepHypRef Expression
1 xpeq2 4643 . . . 4  |-  ( A  =  B  ->  ( { (/) }  X.  A
)  =  ( {
(/) }  X.  B
) )
21adantr 276 . . 3  |-  ( ( A  =  B  /\  C  =  D )  ->  ( { (/) }  X.  A )  =  ( { (/) }  X.  B
) )
3 xpeq2 4643 . . . 4  |-  ( C  =  D  ->  ( { 1o }  X.  C
)  =  ( { 1o }  X.  D
) )
43adantl 277 . . 3  |-  ( ( A  =  B  /\  C  =  D )  ->  ( { 1o }  X.  C )  =  ( { 1o }  X.  D ) )
52, 4uneq12d 3292 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  C ) )  =  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  D ) ) )
6 df-dju 7039 . 2  |-  ( A C )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  C
) )
7 df-dju 7039 . 2  |-  ( B D )  =  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  D
) )
85, 6, 73eqtr4g 2235 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A C )  =  ( B D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    u. cun 3129   (/)c0 3424   {csn 3594    X. cxp 4626   1oc1o 6412   ⊔ cdju 7038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-opab 4067  df-xp 4634  df-dju 7039
This theorem is referenced by:  djueq1  7041  djueq2  7042  casef  7089
  Copyright terms: Public domain W3C validator