ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djueq12 Unicode version

Theorem djueq12 7098
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djueq12  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A C )  =  ( B D ) )

Proof of Theorem djueq12
StepHypRef Expression
1 xpeq2 4674 . . . 4  |-  ( A  =  B  ->  ( { (/) }  X.  A
)  =  ( {
(/) }  X.  B
) )
21adantr 276 . . 3  |-  ( ( A  =  B  /\  C  =  D )  ->  ( { (/) }  X.  A )  =  ( { (/) }  X.  B
) )
3 xpeq2 4674 . . . 4  |-  ( C  =  D  ->  ( { 1o }  X.  C
)  =  ( { 1o }  X.  D
) )
43adantl 277 . . 3  |-  ( ( A  =  B  /\  C  =  D )  ->  ( { 1o }  X.  C )  =  ( { 1o }  X.  D ) )
52, 4uneq12d 3314 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  C ) )  =  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  D ) ) )
6 df-dju 7097 . 2  |-  ( A C )  =  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  C
) )
7 df-dju 7097 . 2  |-  ( B D )  =  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  D
) )
85, 6, 73eqtr4g 2251 1  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A C )  =  ( B D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    u. cun 3151   (/)c0 3446   {csn 3618    X. cxp 4657   1oc1o 6462   ⊔ cdju 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-opab 4091  df-xp 4665  df-dju 7097
This theorem is referenced by:  djueq1  7099  djueq2  7100  casef  7147
  Copyright terms: Public domain W3C validator