ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djueq1 Unicode version

Theorem djueq1 7207
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djueq1  |-  ( A  =  B  ->  ( A C )  =  ( B C ) )

Proof of Theorem djueq1
StepHypRef Expression
1 eqid 2229 . 2  |-  C  =  C
2 djueq12 7206 . 2  |-  ( ( A  =  B  /\  C  =  C )  ->  ( A C )  =  ( B C ) )
31, 2mpan2 425 1  |-  ( A  =  B  ->  ( A C )  =  ( B C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   ⊔ cdju 7204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-opab 4146  df-xp 4725  df-dju 7205
This theorem is referenced by:  enumct  7282  ctssexmid  7317  ctiunctal  13012  unct  13013  subctctexmid  16366  sbthom  16394
  Copyright terms: Public domain W3C validator