ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djueq1 Unicode version

Theorem djueq1 7017
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djueq1  |-  ( A  =  B  ->  ( A C )  =  ( B C ) )

Proof of Theorem djueq1
StepHypRef Expression
1 eqid 2170 . 2  |-  C  =  C
2 djueq12 7016 . 2  |-  ( ( A  =  B  /\  C  =  C )  ->  ( A C )  =  ( B C ) )
31, 2mpan2 423 1  |-  ( A  =  B  ->  ( A C )  =  ( B C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   ⊔ cdju 7014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-opab 4051  df-xp 4617  df-dju 7015
This theorem is referenced by:  enumct  7092  ctssexmid  7126  ctiunctal  12396  unct  12397  subctctexmid  14034  sbthom  14058
  Copyright terms: Public domain W3C validator