ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djueq1 Unicode version

Theorem djueq1 7144
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djueq1  |-  ( A  =  B  ->  ( A C )  =  ( B C ) )

Proof of Theorem djueq1
StepHypRef Expression
1 eqid 2205 . 2  |-  C  =  C
2 djueq12 7143 . 2  |-  ( ( A  =  B  /\  C  =  C )  ->  ( A C )  =  ( B C ) )
31, 2mpan2 425 1  |-  ( A  =  B  ->  ( A C )  =  ( B C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   ⊔ cdju 7141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-opab 4107  df-xp 4682  df-dju 7142
This theorem is referenced by:  enumct  7219  ctssexmid  7254  ctiunctal  12845  unct  12846  subctctexmid  15974  sbthom  16002
  Copyright terms: Public domain W3C validator