ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djueq1 Unicode version

Theorem djueq1 7099
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djueq1  |-  ( A  =  B  ->  ( A C )  =  ( B C ) )

Proof of Theorem djueq1
StepHypRef Expression
1 eqid 2193 . 2  |-  C  =  C
2 djueq12 7098 . 2  |-  ( ( A  =  B  /\  C  =  C )  ->  ( A C )  =  ( B C ) )
31, 2mpan2 425 1  |-  ( A  =  B  ->  ( A C )  =  ( B C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   ⊔ cdju 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-opab 4091  df-xp 4665  df-dju 7097
This theorem is referenced by:  enumct  7174  ctssexmid  7209  ctiunctal  12598  unct  12599  subctctexmid  15491  sbthom  15516
  Copyright terms: Public domain W3C validator