![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djueq12 | GIF version |
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
Ref | Expression |
---|---|
djueq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq2 4451 | . . . 4 ⊢ (𝐴 = 𝐵 → ({∅} × 𝐴) = ({∅} × 𝐵)) | |
2 | 1 | adantr 270 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ({∅} × 𝐴) = ({∅} × 𝐵)) |
3 | xpeq2 4451 | . . . 4 ⊢ (𝐶 = 𝐷 → ({1𝑜} × 𝐶) = ({1𝑜} × 𝐷)) | |
4 | 3 | adantl 271 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ({1𝑜} × 𝐶) = ({1𝑜} × 𝐷)) |
5 | 2, 4 | uneq12d 3155 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (({∅} × 𝐴) ∪ ({1𝑜} × 𝐶)) = (({∅} × 𝐵) ∪ ({1𝑜} × 𝐷))) |
6 | df-dju 6721 | . 2 ⊢ (𝐴 ⊔ 𝐶) = (({∅} × 𝐴) ∪ ({1𝑜} × 𝐶)) | |
7 | df-dju 6721 | . 2 ⊢ (𝐵 ⊔ 𝐷) = (({∅} × 𝐵) ∪ ({1𝑜} × 𝐷)) | |
8 | 5, 6, 7 | 3eqtr4g 2145 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1289 ∪ cun 2997 ∅c0 3286 {csn 3444 × cxp 4434 1𝑜c1o 6166 ⊔ cdju 6720 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 df-opab 3898 df-xp 4442 df-dju 6721 |
This theorem is referenced by: djueq1 6723 djueq2 6724 casef 6769 |
Copyright terms: Public domain | W3C validator |