ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djueq12 GIF version

Theorem djueq12 7004
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djueq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem djueq12
StepHypRef Expression
1 xpeq2 4619 . . . 4 (𝐴 = 𝐵 → ({∅} × 𝐴) = ({∅} × 𝐵))
21adantr 274 . . 3 ((𝐴 = 𝐵𝐶 = 𝐷) → ({∅} × 𝐴) = ({∅} × 𝐵))
3 xpeq2 4619 . . . 4 (𝐶 = 𝐷 → ({1o} × 𝐶) = ({1o} × 𝐷))
43adantl 275 . . 3 ((𝐴 = 𝐵𝐶 = 𝐷) → ({1o} × 𝐶) = ({1o} × 𝐷))
52, 4uneq12d 3277 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) = (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
6 df-dju 7003 . 2 (𝐴𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶))
7 df-dju 7003 . 2 (𝐵𝐷) = (({∅} × 𝐵) ∪ ({1o} × 𝐷))
85, 6, 73eqtr4g 2224 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  cun 3114  c0 3409  {csn 3576   × cxp 4602  1oc1o 6377  cdju 7002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-opab 4044  df-xp 4610  df-dju 7003
This theorem is referenced by:  djueq1  7005  djueq2  7006  casef  7053
  Copyright terms: Public domain W3C validator