| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djueq12 | GIF version | ||
| Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| djueq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq2 4708 | . . . 4 ⊢ (𝐴 = 𝐵 → ({∅} × 𝐴) = ({∅} × 𝐵)) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ({∅} × 𝐴) = ({∅} × 𝐵)) |
| 3 | xpeq2 4708 | . . . 4 ⊢ (𝐶 = 𝐷 → ({1o} × 𝐶) = ({1o} × 𝐷)) | |
| 4 | 3 | adantl 277 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ({1o} × 𝐶) = ({1o} × 𝐷)) |
| 5 | 2, 4 | uneq12d 3336 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) = (({∅} × 𝐵) ∪ ({1o} × 𝐷))) |
| 6 | df-dju 7166 | . 2 ⊢ (𝐴 ⊔ 𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶)) | |
| 7 | df-dju 7166 | . 2 ⊢ (𝐵 ⊔ 𝐷) = (({∅} × 𝐵) ∪ ({1o} × 𝐷)) | |
| 8 | 5, 6, 7 | 3eqtr4g 2265 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∪ cun 3172 ∅c0 3468 {csn 3643 × cxp 4691 1oc1o 6518 ⊔ cdju 7165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-opab 4122 df-xp 4699 df-dju 7166 |
| This theorem is referenced by: djueq1 7168 djueq2 7169 casef 7216 |
| Copyright terms: Public domain | W3C validator |