![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djueq12 | GIF version |
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
Ref | Expression |
---|---|
djueq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq2 4656 | . . . 4 ⊢ (𝐴 = 𝐵 → ({∅} × 𝐴) = ({∅} × 𝐵)) | |
2 | 1 | adantr 276 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ({∅} × 𝐴) = ({∅} × 𝐵)) |
3 | xpeq2 4656 | . . . 4 ⊢ (𝐶 = 𝐷 → ({1o} × 𝐶) = ({1o} × 𝐷)) | |
4 | 3 | adantl 277 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ({1o} × 𝐶) = ({1o} × 𝐷)) |
5 | 2, 4 | uneq12d 3305 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) = (({∅} × 𝐵) ∪ ({1o} × 𝐷))) |
6 | df-dju 7055 | . 2 ⊢ (𝐴 ⊔ 𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶)) | |
7 | df-dju 7055 | . 2 ⊢ (𝐵 ⊔ 𝐷) = (({∅} × 𝐵) ∪ ({1o} × 𝐷)) | |
8 | 5, 6, 7 | 3eqtr4g 2247 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∪ cun 3142 ∅c0 3437 {csn 3607 × cxp 4639 1oc1o 6428 ⊔ cdju 7054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-opab 4080 df-xp 4647 df-dju 7055 |
This theorem is referenced by: djueq1 7057 djueq2 7058 casef 7105 |
Copyright terms: Public domain | W3C validator |