Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djueq12 | GIF version |
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.) |
Ref | Expression |
---|---|
djueq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq2 4619 | . . . 4 ⊢ (𝐴 = 𝐵 → ({∅} × 𝐴) = ({∅} × 𝐵)) | |
2 | 1 | adantr 274 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ({∅} × 𝐴) = ({∅} × 𝐵)) |
3 | xpeq2 4619 | . . . 4 ⊢ (𝐶 = 𝐷 → ({1o} × 𝐶) = ({1o} × 𝐷)) | |
4 | 3 | adantl 275 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → ({1o} × 𝐶) = ({1o} × 𝐷)) |
5 | 2, 4 | uneq12d 3277 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) = (({∅} × 𝐵) ∪ ({1o} × 𝐷))) |
6 | df-dju 7003 | . 2 ⊢ (𝐴 ⊔ 𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶)) | |
7 | df-dju 7003 | . 2 ⊢ (𝐵 ⊔ 𝐷) = (({∅} × 𝐵) ∪ ({1o} × 𝐷)) | |
8 | 5, 6, 7 | 3eqtr4g 2224 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ⊔ 𝐶) = (𝐵 ⊔ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∪ cun 3114 ∅c0 3409 {csn 3576 × cxp 4602 1oc1o 6377 ⊔ cdju 7002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-opab 4044 df-xp 4610 df-dju 7003 |
This theorem is referenced by: djueq1 7005 djueq2 7006 casef 7053 |
Copyright terms: Public domain | W3C validator |