ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djueq12 GIF version

Theorem djueq12 7206
Description: Equality theorem for disjoint union. (Contributed by Jim Kingdon, 23-Jun-2022.)
Assertion
Ref Expression
djueq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem djueq12
StepHypRef Expression
1 xpeq2 4734 . . . 4 (𝐴 = 𝐵 → ({∅} × 𝐴) = ({∅} × 𝐵))
21adantr 276 . . 3 ((𝐴 = 𝐵𝐶 = 𝐷) → ({∅} × 𝐴) = ({∅} × 𝐵))
3 xpeq2 4734 . . . 4 (𝐶 = 𝐷 → ({1o} × 𝐶) = ({1o} × 𝐷))
43adantl 277 . . 3 ((𝐴 = 𝐵𝐶 = 𝐷) → ({1o} × 𝐶) = ({1o} × 𝐷))
52, 4uneq12d 3359 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (({∅} × 𝐴) ∪ ({1o} × 𝐶)) = (({∅} × 𝐵) ∪ ({1o} × 𝐷)))
6 df-dju 7205 . 2 (𝐴𝐶) = (({∅} × 𝐴) ∪ ({1o} × 𝐶))
7 df-dju 7205 . 2 (𝐵𝐷) = (({∅} × 𝐵) ∪ ({1o} × 𝐷))
85, 6, 73eqtr4g 2287 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  cun 3195  c0 3491  {csn 3666   × cxp 4717  1oc1o 6555  cdju 7204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-opab 4146  df-xp 4725  df-dju 7205
This theorem is referenced by:  djueq1  7207  djueq2  7208  casef  7255
  Copyright terms: Public domain W3C validator