| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq12d | Unicode version | ||
| Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| uneq1d.1 |
|
| uneq12d.2 |
|
| Ref | Expression |
|---|---|
| uneq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 |
. 2
| |
| 2 | uneq12d.2 |
. 2
| |
| 3 | uneq12 3313 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 |
| This theorem is referenced by: disjpr2 3687 diftpsn3 3764 iunxprg 3998 undifexmid 4227 exmidundif 4240 exmidundifim 4241 exmid1stab 4242 suceq 4438 rnpropg 5150 fntpg 5315 foun 5524 fnimapr 5622 fprg 5746 fsnunfv 5764 fsnunres 5765 tfrlemi1 6391 tfr1onlemaccex 6407 tfrcllemaccex 6420 ereq1 6600 undifdc 6986 unfiin 6988 djueq12 7106 fztp 10155 fzsuc2 10156 fseq1p1m1 10171 ennnfonelemg 12630 ennnfonelemp1 12633 ennnfonelem1 12634 ennnfonelemnn0 12649 setsvalg 12718 setsfun0 12724 setsresg 12726 setsslid 12739 prdsex 12950 psrval 14230 lgsquadlem2 15329 |
| Copyright terms: Public domain | W3C validator |