Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneq12d | Unicode version |
Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
uneq1d.1 | |
uneq12d.2 |
Ref | Expression |
---|---|
uneq12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1d.1 | . 2 | |
2 | uneq12d.2 | . 2 | |
3 | uneq12 3276 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cun 3119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 |
This theorem is referenced by: disjpr2 3645 diftpsn3 3719 iunxprg 3951 undifexmid 4177 exmidundif 4190 exmidundifim 4191 suceq 4385 rnpropg 5088 fntpg 5252 foun 5459 fnimapr 5554 fprg 5676 fsnunfv 5694 fsnunres 5695 tfrlemi1 6308 tfr1onlemaccex 6324 tfrcllemaccex 6337 ereq1 6516 undifdc 6897 unfiin 6899 djueq12 7012 fztp 10021 fzsuc2 10022 fseq1p1m1 10037 ennnfonelemg 12345 ennnfonelemp1 12348 ennnfonelem1 12349 ennnfonelemnn0 12364 setsvalg 12433 setsfun0 12439 setsresg 12441 setsslid 12453 exmid1stab 13993 |
Copyright terms: Public domain | W3C validator |