| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq12d | Unicode version | ||
| Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| uneq1d.1 |
|
| uneq12d.2 |
|
| Ref | Expression |
|---|---|
| uneq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 |
. 2
| |
| 2 | uneq12d.2 |
. 2
| |
| 3 | uneq12 3330 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 |
| This theorem is referenced by: disjpr2 3707 diftpsn3 3785 iunxprg 4022 undifexmid 4253 exmidundif 4266 exmidundifim 4267 exmid1stab 4268 suceq 4467 rnpropg 5181 fntpg 5349 foun 5563 fnimapr 5662 fprg 5790 fsnunfv 5808 fsnunres 5809 tfrlemi1 6441 tfr1onlemaccex 6457 tfrcllemaccex 6470 ereq1 6650 undifdc 7047 unfiin 7049 djueq12 7167 fztp 10235 fzsuc2 10236 fseq1p1m1 10251 ennnfonelemg 12889 ennnfonelemp1 12892 ennnfonelem1 12893 ennnfonelemnn0 12908 setsvalg 12977 setsfun0 12983 setsresg 12985 setsslid 12998 prdsex 13216 prdsval 13220 psrval 14543 lgsquadlem2 15670 |
| Copyright terms: Public domain | W3C validator |