| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq12d | Unicode version | ||
| Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| uneq1d.1 |
|
| uneq12d.2 |
|
| Ref | Expression |
|---|---|
| uneq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 |
. 2
| |
| 2 | uneq12d.2 |
. 2
| |
| 3 | uneq12 3322 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 |
| This theorem is referenced by: disjpr2 3697 diftpsn3 3774 iunxprg 4008 undifexmid 4238 exmidundif 4251 exmidundifim 4252 exmid1stab 4253 suceq 4450 rnpropg 5163 fntpg 5331 foun 5543 fnimapr 5641 fprg 5769 fsnunfv 5787 fsnunres 5788 tfrlemi1 6420 tfr1onlemaccex 6436 tfrcllemaccex 6449 ereq1 6629 undifdc 7023 unfiin 7025 djueq12 7143 fztp 10202 fzsuc2 10203 fseq1p1m1 10218 ennnfonelemg 12807 ennnfonelemp1 12810 ennnfonelem1 12811 ennnfonelemnn0 12826 setsvalg 12895 setsfun0 12901 setsresg 12903 setsslid 12916 prdsex 13134 prdsval 13138 psrval 14461 lgsquadlem2 15588 |
| Copyright terms: Public domain | W3C validator |