![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uneq12d | Unicode version |
Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
uneq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
uneq12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
uneq12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | uneq12d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | uneq12 3309 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 |
This theorem is referenced by: disjpr2 3683 diftpsn3 3760 iunxprg 3994 undifexmid 4223 exmidundif 4236 exmidundifim 4237 exmid1stab 4238 suceq 4434 rnpropg 5146 fntpg 5311 foun 5520 fnimapr 5618 fprg 5742 fsnunfv 5760 fsnunres 5761 tfrlemi1 6387 tfr1onlemaccex 6403 tfrcllemaccex 6416 ereq1 6596 undifdc 6982 unfiin 6984 djueq12 7100 fztp 10147 fzsuc2 10148 fseq1p1m1 10163 ennnfonelemg 12563 ennnfonelemp1 12566 ennnfonelem1 12567 ennnfonelemnn0 12582 setsvalg 12651 setsfun0 12657 setsresg 12659 setsslid 12672 prdsex 12883 psrval 14163 lgsquadlem2 15235 |
Copyright terms: Public domain | W3C validator |