| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq12d | Unicode version | ||
| Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| uneq1d.1 |
|
| uneq12d.2 |
|
| Ref | Expression |
|---|---|
| uneq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 |
. 2
| |
| 2 | uneq12d.2 |
. 2
| |
| 3 | uneq12 3322 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 |
| This theorem is referenced by: disjpr2 3697 diftpsn3 3774 iunxprg 4008 undifexmid 4237 exmidundif 4250 exmidundifim 4251 exmid1stab 4252 suceq 4449 rnpropg 5162 fntpg 5330 foun 5541 fnimapr 5639 fprg 5767 fsnunfv 5785 fsnunres 5786 tfrlemi1 6418 tfr1onlemaccex 6434 tfrcllemaccex 6447 ereq1 6627 undifdc 7021 unfiin 7023 djueq12 7141 fztp 10200 fzsuc2 10201 fseq1p1m1 10216 ennnfonelemg 12774 ennnfonelemp1 12777 ennnfonelem1 12778 ennnfonelemnn0 12793 setsvalg 12862 setsfun0 12868 setsresg 12870 setsslid 12883 prdsex 13101 prdsval 13105 psrval 14428 lgsquadlem2 15555 |
| Copyright terms: Public domain | W3C validator |