Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneq12d | Unicode version |
Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
uneq1d.1 | |
uneq12d.2 |
Ref | Expression |
---|---|
uneq12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1d.1 | . 2 | |
2 | uneq12d.2 | . 2 | |
3 | uneq12 3276 | . 2 | |
4 | 1, 2, 3 | syl2anc 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cun 3119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 |
This theorem is referenced by: disjpr2 3647 diftpsn3 3721 iunxprg 3953 undifexmid 4179 exmidundif 4192 exmidundifim 4193 suceq 4387 rnpropg 5090 fntpg 5254 foun 5461 fnimapr 5556 fprg 5679 fsnunfv 5697 fsnunres 5698 tfrlemi1 6311 tfr1onlemaccex 6327 tfrcllemaccex 6340 ereq1 6520 undifdc 6901 unfiin 6903 djueq12 7016 fztp 10034 fzsuc2 10035 fseq1p1m1 10050 ennnfonelemg 12358 ennnfonelemp1 12361 ennnfonelem1 12362 ennnfonelemnn0 12377 setsvalg 12446 setsfun0 12452 setsresg 12454 setsslid 12466 exmid1stab 14033 |
Copyright terms: Public domain | W3C validator |