![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uneq12d | Unicode version |
Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
uneq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
uneq12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
uneq12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | uneq12d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | uneq12 3285 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 |
This theorem is referenced by: disjpr2 3657 diftpsn3 3734 iunxprg 3968 undifexmid 4194 exmidundif 4207 exmidundifim 4208 exmid1stab 4209 suceq 4403 rnpropg 5109 fntpg 5273 foun 5481 fnimapr 5577 fprg 5700 fsnunfv 5718 fsnunres 5719 tfrlemi1 6333 tfr1onlemaccex 6349 tfrcllemaccex 6362 ereq1 6542 undifdc 6923 unfiin 6925 djueq12 7038 fztp 10078 fzsuc2 10079 fseq1p1m1 10094 ennnfonelemg 12404 ennnfonelemp1 12407 ennnfonelem1 12408 ennnfonelemnn0 12423 setsvalg 12492 setsfun0 12498 setsresg 12500 setsslid 12513 prdsex 12718 |
Copyright terms: Public domain | W3C validator |