ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq12d Unicode version

Theorem uneq12d 3277
Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
uneq1d.1  |-  ( ph  ->  A  =  B )
uneq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
uneq12d  |-  ( ph  ->  ( A  u.  C
)  =  ( B  u.  D ) )

Proof of Theorem uneq12d
StepHypRef Expression
1 uneq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 uneq12d.2 . 2  |-  ( ph  ->  C  =  D )
3 uneq12 3271 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  u.  C
)  =  ( B  u.  D ) )
41, 2, 3syl2anc 409 1  |-  ( ph  ->  ( A  u.  C
)  =  ( B  u.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    u. cun 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120
This theorem is referenced by:  disjpr2  3640  diftpsn3  3714  iunxprg  3946  undifexmid  4172  exmidundif  4185  exmidundifim  4186  suceq  4380  rnpropg  5083  fntpg  5244  foun  5451  fnimapr  5546  fprg  5668  fsnunfv  5686  fsnunres  5687  tfrlemi1  6300  tfr1onlemaccex  6316  tfrcllemaccex  6329  ereq1  6508  undifdc  6889  unfiin  6891  djueq12  7004  fztp  10013  fzsuc2  10014  fseq1p1m1  10029  ennnfonelemg  12336  ennnfonelemp1  12339  ennnfonelem1  12340  ennnfonelemnn0  12355  setsvalg  12424  setsfun0  12430  setsresg  12432  setsslid  12444  exmid1stab  13880
  Copyright terms: Public domain W3C validator