![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uneq12d | Unicode version |
Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
uneq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
uneq12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
uneq12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | uneq12d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | uneq12 3296 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-un 3145 |
This theorem is referenced by: disjpr2 3668 diftpsn3 3745 iunxprg 3979 undifexmid 4205 exmidundif 4218 exmidundifim 4219 exmid1stab 4220 suceq 4414 rnpropg 5120 fntpg 5284 foun 5492 fnimapr 5589 fprg 5712 fsnunfv 5730 fsnunres 5731 tfrlemi1 6347 tfr1onlemaccex 6363 tfrcllemaccex 6376 ereq1 6556 undifdc 6937 unfiin 6939 djueq12 7052 fztp 10092 fzsuc2 10093 fseq1p1m1 10108 ennnfonelemg 12418 ennnfonelemp1 12421 ennnfonelem1 12422 ennnfonelemnn0 12437 setsvalg 12506 setsfun0 12512 setsresg 12514 setsslid 12527 prdsex 12736 |
Copyright terms: Public domain | W3C validator |