ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq12d Unicode version

Theorem uneq12d 3359
Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
uneq1d.1  |-  ( ph  ->  A  =  B )
uneq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
uneq12d  |-  ( ph  ->  ( A  u.  C
)  =  ( B  u.  D ) )

Proof of Theorem uneq12d
StepHypRef Expression
1 uneq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 uneq12d.2 . 2  |-  ( ph  ->  C  =  D )
3 uneq12 3353 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  u.  C
)  =  ( B  u.  D ) )
41, 2, 3syl2anc 411 1  |-  ( ph  ->  ( A  u.  C
)  =  ( B  u.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    u. cun 3195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201
This theorem is referenced by:  disjpr2  3730  diftpsn3  3809  iunxprg  4046  undifexmid  4277  exmidundif  4290  exmidundifim  4291  exmid1stab  4292  suceq  4493  rnpropg  5208  fntpg  5377  foun  5591  fnimapr  5694  fprg  5822  fsnunfv  5840  fsnunres  5841  tfrlemi1  6478  tfr1onlemaccex  6494  tfrcllemaccex  6507  ereq1  6687  undifdc  7086  unfiin  7088  djueq12  7206  fztp  10274  fzsuc2  10275  fseq1p1m1  10290  ennnfonelemg  12974  ennnfonelemp1  12977  ennnfonelem1  12978  ennnfonelemnn0  12993  setsvalg  13062  setsfun0  13068  setsresg  13070  setsslid  13083  prdsex  13302  prdsval  13306  psrval  14630  lgsquadlem2  15757
  Copyright terms: Public domain W3C validator