| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq12d | Unicode version | ||
| Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| uneq1d.1 |
|
| uneq12d.2 |
|
| Ref | Expression |
|---|---|
| uneq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1d.1 |
. 2
| |
| 2 | uneq12d.2 |
. 2
| |
| 3 | uneq12 3353 |
. 2
| |
| 4 | 1, 2, 3 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 |
| This theorem is referenced by: disjpr2 3730 diftpsn3 3809 iunxprg 4046 undifexmid 4277 exmidundif 4290 exmidundifim 4291 exmid1stab 4292 suceq 4493 rnpropg 5208 fntpg 5377 foun 5591 fnimapr 5694 fprg 5822 fsnunfv 5840 fsnunres 5841 tfrlemi1 6478 tfr1onlemaccex 6494 tfrcllemaccex 6507 ereq1 6687 undifdc 7086 unfiin 7088 djueq12 7206 fztp 10274 fzsuc2 10275 fseq1p1m1 10290 ennnfonelemg 12974 ennnfonelemp1 12977 ennnfonelem1 12978 ennnfonelemnn0 12993 setsvalg 13062 setsfun0 13068 setsresg 13070 setsslid 13083 prdsex 13302 prdsval 13306 psrval 14630 lgsquadlem2 15757 |
| Copyright terms: Public domain | W3C validator |