Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > casef | Unicode version |
Description: The "case" construction of two functions is a function on the disjoint union of their domains. (Contributed by BJ, 10-Jul-2022.) |
Ref | Expression |
---|---|
casef.f | |
casef.g |
Ref | Expression |
---|---|
casef | case ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | casef.f | . . . . 5 | |
2 | ffun 5350 | . . . . 5 | |
3 | 1, 2 | syl 14 | . . . 4 |
4 | casef.g | . . . . 5 | |
5 | ffun 5350 | . . . . 5 | |
6 | 4, 5 | syl 14 | . . . 4 |
7 | 3, 6 | casefun 7062 | . . 3 case |
8 | caserel 7064 | . . . 4 case ⊔ | |
9 | ssid 3167 | . . . . 5 ⊔ ⊔ | |
10 | frn 5356 | . . . . . . 7 | |
11 | 1, 10 | syl 14 | . . . . . 6 |
12 | frn 5356 | . . . . . . 7 | |
13 | 4, 12 | syl 14 | . . . . . 6 |
14 | 11, 13 | unssd 3303 | . . . . 5 |
15 | xpss12 4718 | . . . . 5 ⊔ ⊔ ⊔ ⊔ | |
16 | 9, 14, 15 | sylancr 412 | . . . 4 ⊔ ⊔ |
17 | 8, 16 | sstrid 3158 | . . 3 case ⊔ |
18 | funssxp 5367 | . . . 4 case case ⊔ case case case ⊔ | |
19 | 18 | simplbi 272 | . . 3 case case ⊔ case case |
20 | 7, 17, 19 | syl2anc 409 | . 2 case case |
21 | casedm 7063 | . . . 4 case ⊔ | |
22 | fdm 5353 | . . . . . 6 | |
23 | 1, 22 | syl 14 | . . . . 5 |
24 | fdm 5353 | . . . . . 6 | |
25 | 4, 24 | syl 14 | . . . . 5 |
26 | djueq12 7016 | . . . . 5 ⊔ ⊔ | |
27 | 23, 25, 26 | syl2anc 409 | . . . 4 ⊔ ⊔ |
28 | 21, 27 | eqtrid 2215 | . . 3 case ⊔ |
29 | 28 | feq2d 5335 | . 2 case case case ⊔ |
30 | 20, 29 | mpbid 146 | 1 case ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 cun 3119 wss 3121 cxp 4609 cdm 4611 crn 4612 wfun 5192 wf 5194 ⊔ cdju 7014 casecdjucase 7060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-dju 7015 df-inl 7024 df-inr 7025 df-case 7061 |
This theorem is referenced by: casef1 7067 omp1eomlem 7071 ctm 7086 |
Copyright terms: Public domain | W3C validator |