ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casef Unicode version

Theorem casef 6981
Description: The "case" construction of two functions is a function on the disjoint union of their domains. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casef.f  |-  ( ph  ->  F : A --> X )
casef.g  |-  ( ph  ->  G : B --> X )
Assertion
Ref Expression
casef  |-  ( ph  -> case ( F ,  G
) : ( A B ) --> X )

Proof of Theorem casef
StepHypRef Expression
1 casef.f . . . . 5  |-  ( ph  ->  F : A --> X )
2 ffun 5283 . . . . 5  |-  ( F : A --> X  ->  Fun  F )
31, 2syl 14 . . . 4  |-  ( ph  ->  Fun  F )
4 casef.g . . . . 5  |-  ( ph  ->  G : B --> X )
5 ffun 5283 . . . . 5  |-  ( G : B --> X  ->  Fun  G )
64, 5syl 14 . . . 4  |-  ( ph  ->  Fun  G )
73, 6casefun 6978 . . 3  |-  ( ph  ->  Fun case ( F ,  G ) )
8 caserel 6980 . . . 4  |- case ( F ,  G )  C_  ( ( dom  F dom 
G )  X.  ( ran  F  u.  ran  G
) )
9 ssid 3122 . . . . 5  |-  ( dom 
F dom  G )  C_  ( dom  F dom  G )
10 frn 5289 . . . . . . 7  |-  ( F : A --> X  ->  ran  F  C_  X )
111, 10syl 14 . . . . . 6  |-  ( ph  ->  ran  F  C_  X
)
12 frn 5289 . . . . . . 7  |-  ( G : B --> X  ->  ran  G  C_  X )
134, 12syl 14 . . . . . 6  |-  ( ph  ->  ran  G  C_  X
)
1411, 13unssd 3257 . . . . 5  |-  ( ph  ->  ( ran  F  u.  ran  G )  C_  X
)
15 xpss12 4654 . . . . 5  |-  ( ( ( dom  F dom  G
)  C_  ( dom  F dom  G )  /\  ( ran  F  u.  ran  G
)  C_  X )  ->  ( ( dom  F dom 
G )  X.  ( ran  F  u.  ran  G
) )  C_  (
( dom  F dom  G
)  X.  X ) )
169, 14, 15sylancr 411 . . . 4  |-  ( ph  ->  ( ( dom  F dom 
G )  X.  ( ran  F  u.  ran  G
) )  C_  (
( dom  F dom  G
)  X.  X ) )
178, 16sstrid 3113 . . 3  |-  ( ph  -> case ( F ,  G
)  C_  ( ( dom  F dom  G )  X.  X ) )
18 funssxp 5300 . . . 4  |-  ( ( Fun case ( F ,  G )  /\ case ( F ,  G )  C_  ( ( dom  F dom 
G )  X.  X
) )  <->  (case ( F ,  G ) : dom case ( F ,  G ) --> X  /\  dom case ( F ,  G
)  C_  ( dom  F dom  G ) ) )
1918simplbi 272 . . 3  |-  ( ( Fun case ( F ,  G )  /\ case ( F ,  G )  C_  ( ( dom  F dom 
G )  X.  X
) )  -> case ( F ,  G ) : dom case ( F ,  G ) --> X )
207, 17, 19syl2anc 409 . 2  |-  ( ph  -> case ( F ,  G
) : dom case ( F ,  G ) --> X )
21 casedm 6979 . . . 4  |-  dom case ( F ,  G )  =  ( dom  F dom 
G )
22 fdm 5286 . . . . . 6  |-  ( F : A --> X  ->  dom  F  =  A )
231, 22syl 14 . . . . 5  |-  ( ph  ->  dom  F  =  A )
24 fdm 5286 . . . . . 6  |-  ( G : B --> X  ->  dom  G  =  B )
254, 24syl 14 . . . . 5  |-  ( ph  ->  dom  G  =  B )
26 djueq12 6932 . . . . 5  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  ( dom  F dom  G )  =  ( A B )
)
2723, 25, 26syl2anc 409 . . . 4  |-  ( ph  ->  ( dom  F dom  G
)  =  ( A B ) )
2821, 27syl5eq 2185 . . 3  |-  ( ph  ->  dom case ( F ,  G )  =  ( A B ) )
2928feq2d 5268 . 2  |-  ( ph  ->  (case ( F ,  G ) : dom case ( F ,  G ) --> X  <-> case ( F ,  G
) : ( A B ) --> X ) )
3020, 29mpbid 146 1  |-  ( ph  -> case ( F ,  G
) : ( A B ) --> X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    u. cun 3074    C_ wss 3076    X. cxp 4545   dom cdm 4547   ran crn 4548   Fun wfun 5125   -->wf 5127   ⊔ cdju 6930  casecdjucase 6976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047  df-1o 6321  df-dju 6931  df-inl 6940  df-inr 6941  df-case 6977
This theorem is referenced by:  casef1  6983  omp1eomlem  6987  ctm  7002
  Copyright terms: Public domain W3C validator