ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casef Unicode version

Theorem casef 7255
Description: The "case" construction of two functions is a function on the disjoint union of their domains. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casef.f  |-  ( ph  ->  F : A --> X )
casef.g  |-  ( ph  ->  G : B --> X )
Assertion
Ref Expression
casef  |-  ( ph  -> case ( F ,  G
) : ( A B ) --> X )

Proof of Theorem casef
StepHypRef Expression
1 casef.f . . . . 5  |-  ( ph  ->  F : A --> X )
2 ffun 5476 . . . . 5  |-  ( F : A --> X  ->  Fun  F )
31, 2syl 14 . . . 4  |-  ( ph  ->  Fun  F )
4 casef.g . . . . 5  |-  ( ph  ->  G : B --> X )
5 ffun 5476 . . . . 5  |-  ( G : B --> X  ->  Fun  G )
64, 5syl 14 . . . 4  |-  ( ph  ->  Fun  G )
73, 6casefun 7252 . . 3  |-  ( ph  ->  Fun case ( F ,  G ) )
8 caserel 7254 . . . 4  |- case ( F ,  G )  C_  ( ( dom  F dom 
G )  X.  ( ran  F  u.  ran  G
) )
9 ssid 3244 . . . . 5  |-  ( dom 
F dom  G )  C_  ( dom  F dom  G )
10 frn 5482 . . . . . . 7  |-  ( F : A --> X  ->  ran  F  C_  X )
111, 10syl 14 . . . . . 6  |-  ( ph  ->  ran  F  C_  X
)
12 frn 5482 . . . . . . 7  |-  ( G : B --> X  ->  ran  G  C_  X )
134, 12syl 14 . . . . . 6  |-  ( ph  ->  ran  G  C_  X
)
1411, 13unssd 3380 . . . . 5  |-  ( ph  ->  ( ran  F  u.  ran  G )  C_  X
)
15 xpss12 4826 . . . . 5  |-  ( ( ( dom  F dom  G
)  C_  ( dom  F dom  G )  /\  ( ran  F  u.  ran  G
)  C_  X )  ->  ( ( dom  F dom 
G )  X.  ( ran  F  u.  ran  G
) )  C_  (
( dom  F dom  G
)  X.  X ) )
169, 14, 15sylancr 414 . . . 4  |-  ( ph  ->  ( ( dom  F dom 
G )  X.  ( ran  F  u.  ran  G
) )  C_  (
( dom  F dom  G
)  X.  X ) )
178, 16sstrid 3235 . . 3  |-  ( ph  -> case ( F ,  G
)  C_  ( ( dom  F dom  G )  X.  X ) )
18 funssxp 5493 . . . 4  |-  ( ( Fun case ( F ,  G )  /\ case ( F ,  G )  C_  ( ( dom  F dom 
G )  X.  X
) )  <->  (case ( F ,  G ) : dom case ( F ,  G ) --> X  /\  dom case ( F ,  G
)  C_  ( dom  F dom  G ) ) )
1918simplbi 274 . . 3  |-  ( ( Fun case ( F ,  G )  /\ case ( F ,  G )  C_  ( ( dom  F dom 
G )  X.  X
) )  -> case ( F ,  G ) : dom case ( F ,  G ) --> X )
207, 17, 19syl2anc 411 . 2  |-  ( ph  -> case ( F ,  G
) : dom case ( F ,  G ) --> X )
21 casedm 7253 . . . 4  |-  dom case ( F ,  G )  =  ( dom  F dom 
G )
22 fdm 5479 . . . . . 6  |-  ( F : A --> X  ->  dom  F  =  A )
231, 22syl 14 . . . . 5  |-  ( ph  ->  dom  F  =  A )
24 fdm 5479 . . . . . 6  |-  ( G : B --> X  ->  dom  G  =  B )
254, 24syl 14 . . . . 5  |-  ( ph  ->  dom  G  =  B )
26 djueq12 7206 . . . . 5  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  ( dom  F dom  G )  =  ( A B )
)
2723, 25, 26syl2anc 411 . . . 4  |-  ( ph  ->  ( dom  F dom  G
)  =  ( A B ) )
2821, 27eqtrid 2274 . . 3  |-  ( ph  ->  dom case ( F ,  G )  =  ( A B ) )
2928feq2d 5461 . 2  |-  ( ph  ->  (case ( F ,  G ) : dom case ( F ,  G ) --> X  <-> case ( F ,  G
) : ( A B ) --> X ) )
3020, 29mpbid 147 1  |-  ( ph  -> case ( F ,  G
) : ( A B ) --> X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    u. cun 3195    C_ wss 3197    X. cxp 4717   dom cdm 4719   ran crn 4720   Fun wfun 5312   -->wf 5314   ⊔ cdju 7204  casecdjucase 7250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6286  df-2nd 6287  df-1o 6562  df-dju 7205  df-inl 7214  df-inr 7215  df-case 7251
This theorem is referenced by:  casef1  7257  omp1eomlem  7261  ctm  7276
  Copyright terms: Public domain W3C validator