ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casef Unicode version

Theorem casef 7163
Description: The "case" construction of two functions is a function on the disjoint union of their domains. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casef.f  |-  ( ph  ->  F : A --> X )
casef.g  |-  ( ph  ->  G : B --> X )
Assertion
Ref Expression
casef  |-  ( ph  -> case ( F ,  G
) : ( A B ) --> X )

Proof of Theorem casef
StepHypRef Expression
1 casef.f . . . . 5  |-  ( ph  ->  F : A --> X )
2 ffun 5413 . . . . 5  |-  ( F : A --> X  ->  Fun  F )
31, 2syl 14 . . . 4  |-  ( ph  ->  Fun  F )
4 casef.g . . . . 5  |-  ( ph  ->  G : B --> X )
5 ffun 5413 . . . . 5  |-  ( G : B --> X  ->  Fun  G )
64, 5syl 14 . . . 4  |-  ( ph  ->  Fun  G )
73, 6casefun 7160 . . 3  |-  ( ph  ->  Fun case ( F ,  G ) )
8 caserel 7162 . . . 4  |- case ( F ,  G )  C_  ( ( dom  F dom 
G )  X.  ( ran  F  u.  ran  G
) )
9 ssid 3204 . . . . 5  |-  ( dom 
F dom  G )  C_  ( dom  F dom  G )
10 frn 5419 . . . . . . 7  |-  ( F : A --> X  ->  ran  F  C_  X )
111, 10syl 14 . . . . . 6  |-  ( ph  ->  ran  F  C_  X
)
12 frn 5419 . . . . . . 7  |-  ( G : B --> X  ->  ran  G  C_  X )
134, 12syl 14 . . . . . 6  |-  ( ph  ->  ran  G  C_  X
)
1411, 13unssd 3340 . . . . 5  |-  ( ph  ->  ( ran  F  u.  ran  G )  C_  X
)
15 xpss12 4771 . . . . 5  |-  ( ( ( dom  F dom  G
)  C_  ( dom  F dom  G )  /\  ( ran  F  u.  ran  G
)  C_  X )  ->  ( ( dom  F dom 
G )  X.  ( ran  F  u.  ran  G
) )  C_  (
( dom  F dom  G
)  X.  X ) )
169, 14, 15sylancr 414 . . . 4  |-  ( ph  ->  ( ( dom  F dom 
G )  X.  ( ran  F  u.  ran  G
) )  C_  (
( dom  F dom  G
)  X.  X ) )
178, 16sstrid 3195 . . 3  |-  ( ph  -> case ( F ,  G
)  C_  ( ( dom  F dom  G )  X.  X ) )
18 funssxp 5430 . . . 4  |-  ( ( Fun case ( F ,  G )  /\ case ( F ,  G )  C_  ( ( dom  F dom 
G )  X.  X
) )  <->  (case ( F ,  G ) : dom case ( F ,  G ) --> X  /\  dom case ( F ,  G
)  C_  ( dom  F dom  G ) ) )
1918simplbi 274 . . 3  |-  ( ( Fun case ( F ,  G )  /\ case ( F ,  G )  C_  ( ( dom  F dom 
G )  X.  X
) )  -> case ( F ,  G ) : dom case ( F ,  G ) --> X )
207, 17, 19syl2anc 411 . 2  |-  ( ph  -> case ( F ,  G
) : dom case ( F ,  G ) --> X )
21 casedm 7161 . . . 4  |-  dom case ( F ,  G )  =  ( dom  F dom 
G )
22 fdm 5416 . . . . . 6  |-  ( F : A --> X  ->  dom  F  =  A )
231, 22syl 14 . . . . 5  |-  ( ph  ->  dom  F  =  A )
24 fdm 5416 . . . . . 6  |-  ( G : B --> X  ->  dom  G  =  B )
254, 24syl 14 . . . . 5  |-  ( ph  ->  dom  G  =  B )
26 djueq12 7114 . . . . 5  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  ( dom  F dom  G )  =  ( A B )
)
2723, 25, 26syl2anc 411 . . . 4  |-  ( ph  ->  ( dom  F dom  G
)  =  ( A B ) )
2821, 27eqtrid 2241 . . 3  |-  ( ph  ->  dom case ( F ,  G )  =  ( A B ) )
2928feq2d 5398 . 2  |-  ( ph  ->  (case ( F ,  G ) : dom case ( F ,  G ) --> X  <-> case ( F ,  G
) : ( A B ) --> X ) )
3020, 29mpbid 147 1  |-  ( ph  -> case ( F ,  G
) : ( A B ) --> X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    u. cun 3155    C_ wss 3157    X. cxp 4662   dom cdm 4664   ran crn 4665   Fun wfun 5253   -->wf 5255   ⊔ cdju 7112  casecdjucase 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-1st 6207  df-2nd 6208  df-1o 6483  df-dju 7113  df-inl 7122  df-inr 7123  df-case 7159
This theorem is referenced by:  casef1  7165  omp1eomlem  7169  ctm  7184
  Copyright terms: Public domain W3C validator