ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  casef Unicode version

Theorem casef 7087
Description: The "case" construction of two functions is a function on the disjoint union of their domains. (Contributed by BJ, 10-Jul-2022.)
Hypotheses
Ref Expression
casef.f  |-  ( ph  ->  F : A --> X )
casef.g  |-  ( ph  ->  G : B --> X )
Assertion
Ref Expression
casef  |-  ( ph  -> case ( F ,  G
) : ( A B ) --> X )

Proof of Theorem casef
StepHypRef Expression
1 casef.f . . . . 5  |-  ( ph  ->  F : A --> X )
2 ffun 5369 . . . . 5  |-  ( F : A --> X  ->  Fun  F )
31, 2syl 14 . . . 4  |-  ( ph  ->  Fun  F )
4 casef.g . . . . 5  |-  ( ph  ->  G : B --> X )
5 ffun 5369 . . . . 5  |-  ( G : B --> X  ->  Fun  G )
64, 5syl 14 . . . 4  |-  ( ph  ->  Fun  G )
73, 6casefun 7084 . . 3  |-  ( ph  ->  Fun case ( F ,  G ) )
8 caserel 7086 . . . 4  |- case ( F ,  G )  C_  ( ( dom  F dom 
G )  X.  ( ran  F  u.  ran  G
) )
9 ssid 3176 . . . . 5  |-  ( dom 
F dom  G )  C_  ( dom  F dom  G )
10 frn 5375 . . . . . . 7  |-  ( F : A --> X  ->  ran  F  C_  X )
111, 10syl 14 . . . . . 6  |-  ( ph  ->  ran  F  C_  X
)
12 frn 5375 . . . . . . 7  |-  ( G : B --> X  ->  ran  G  C_  X )
134, 12syl 14 . . . . . 6  |-  ( ph  ->  ran  G  C_  X
)
1411, 13unssd 3312 . . . . 5  |-  ( ph  ->  ( ran  F  u.  ran  G )  C_  X
)
15 xpss12 4734 . . . . 5  |-  ( ( ( dom  F dom  G
)  C_  ( dom  F dom  G )  /\  ( ran  F  u.  ran  G
)  C_  X )  ->  ( ( dom  F dom 
G )  X.  ( ran  F  u.  ran  G
) )  C_  (
( dom  F dom  G
)  X.  X ) )
169, 14, 15sylancr 414 . . . 4  |-  ( ph  ->  ( ( dom  F dom 
G )  X.  ( ran  F  u.  ran  G
) )  C_  (
( dom  F dom  G
)  X.  X ) )
178, 16sstrid 3167 . . 3  |-  ( ph  -> case ( F ,  G
)  C_  ( ( dom  F dom  G )  X.  X ) )
18 funssxp 5386 . . . 4  |-  ( ( Fun case ( F ,  G )  /\ case ( F ,  G )  C_  ( ( dom  F dom 
G )  X.  X
) )  <->  (case ( F ,  G ) : dom case ( F ,  G ) --> X  /\  dom case ( F ,  G
)  C_  ( dom  F dom  G ) ) )
1918simplbi 274 . . 3  |-  ( ( Fun case ( F ,  G )  /\ case ( F ,  G )  C_  ( ( dom  F dom 
G )  X.  X
) )  -> case ( F ,  G ) : dom case ( F ,  G ) --> X )
207, 17, 19syl2anc 411 . 2  |-  ( ph  -> case ( F ,  G
) : dom case ( F ,  G ) --> X )
21 casedm 7085 . . . 4  |-  dom case ( F ,  G )  =  ( dom  F dom 
G )
22 fdm 5372 . . . . . 6  |-  ( F : A --> X  ->  dom  F  =  A )
231, 22syl 14 . . . . 5  |-  ( ph  ->  dom  F  =  A )
24 fdm 5372 . . . . . 6  |-  ( G : B --> X  ->  dom  G  =  B )
254, 24syl 14 . . . . 5  |-  ( ph  ->  dom  G  =  B )
26 djueq12 7038 . . . . 5  |-  ( ( dom  F  =  A  /\  dom  G  =  B )  ->  ( dom  F dom  G )  =  ( A B )
)
2723, 25, 26syl2anc 411 . . . 4  |-  ( ph  ->  ( dom  F dom  G
)  =  ( A B ) )
2821, 27eqtrid 2222 . . 3  |-  ( ph  ->  dom case ( F ,  G )  =  ( A B ) )
2928feq2d 5354 . 2  |-  ( ph  ->  (case ( F ,  G ) : dom case ( F ,  G ) --> X  <-> case ( F ,  G
) : ( A B ) --> X ) )
3020, 29mpbid 147 1  |-  ( ph  -> case ( F ,  G
) : ( A B ) --> X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    u. cun 3128    C_ wss 3130    X. cxp 4625   dom cdm 4627   ran crn 4628   Fun wfun 5211   -->wf 5213   ⊔ cdju 7036  casecdjucase 7082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-iord 4367  df-on 4369  df-suc 4372  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-1st 6141  df-2nd 6142  df-1o 6417  df-dju 7037  df-inl 7046  df-inr 7047  df-case 7083
This theorem is referenced by:  casef1  7089  omp1eomlem  7093  ctm  7108
  Copyright terms: Public domain W3C validator