ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq2i Unicode version

Theorem eceq2i 6716
Description: Equality theorem for the  A-coset and  B-coset of  C, inference version. (Contributed by Peter Mazsa, 11-May-2021.)
Hypothesis
Ref Expression
eceq2i.1  |-  A  =  B
Assertion
Ref Expression
eceq2i  |-  [ C ] A  =  [ C ] B

Proof of Theorem eceq2i
StepHypRef Expression
1 eceq2i.1 . 2  |-  A  =  B
2 eceq2 6715 . 2  |-  ( A  =  B  ->  [ C ] A  =  [ C ] B )
31, 2ax-mp 5 1  |-  [ C ] A  =  [ C ] B
Colors of variables: wff set class
Syntax hints:    = wceq 1395   [cec 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-ec 6680
This theorem is referenced by:  ecqusaddd  13770
  Copyright terms: Public domain W3C validator