ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq2 Unicode version

Theorem eceq2 6657
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq2  |-  ( A  =  B  ->  [ C ] A  =  [ C ] B )

Proof of Theorem eceq2
StepHypRef Expression
1 imaeq1 5017 . 2  |-  ( A  =  B  ->  ( A " { C }
)  =  ( B
" { C }
) )
2 df-ec 6622 . 2  |-  [ C ] A  =  ( A " { C }
)
3 df-ec 6622 . 2  |-  [ C ] B  =  ( B " { C }
)
41, 2, 33eqtr4g 2263 1  |-  ( A  =  B  ->  [ C ] A  =  [ C ] B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   {csn 3633   "cima 4678   [cec 6618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-ec 6622
This theorem is referenced by:  eceq2i  6658  eceq2d  6659  qseq2  6671  nqnq0pi  7551  qusval  13155  qusex  13157  znzrh2  14408
  Copyright terms: Public domain W3C validator