ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq2 Unicode version

Theorem eceq2 6680
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq2  |-  ( A  =  B  ->  [ C ] A  =  [ C ] B )

Proof of Theorem eceq2
StepHypRef Expression
1 imaeq1 5036 . 2  |-  ( A  =  B  ->  ( A " { C }
)  =  ( B
" { C }
) )
2 df-ec 6645 . 2  |-  [ C ] A  =  ( A " { C }
)
3 df-ec 6645 . 2  |-  [ C ] B  =  ( B " { C }
)
41, 2, 33eqtr4g 2265 1  |-  ( A  =  B  ->  [ C ] A  =  [ C ] B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   {csn 3643   "cima 4696   [cec 6641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-ec 6645
This theorem is referenced by:  eceq2i  6681  eceq2d  6682  qseq2  6694  nqnq0pi  7586  qusval  13270  qusex  13272  znzrh2  14523
  Copyright terms: Public domain W3C validator