ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq2 Unicode version

Theorem eceq2 6626
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq2  |-  ( A  =  B  ->  [ C ] A  =  [ C ] B )

Proof of Theorem eceq2
StepHypRef Expression
1 imaeq1 5001 . 2  |-  ( A  =  B  ->  ( A " { C }
)  =  ( B
" { C }
) )
2 df-ec 6591 . 2  |-  [ C ] A  =  ( A " { C }
)
3 df-ec 6591 . 2  |-  [ C ] B  =  ( B " { C }
)
41, 2, 33eqtr4g 2251 1  |-  ( A  =  B  ->  [ C ] A  =  [ C ] B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   {csn 3619   "cima 4663   [cec 6587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-cnv 4668  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-ec 6591
This theorem is referenced by:  eceq2i  6627  eceq2d  6628  qseq2  6640  nqnq0pi  7500  qusval  12909  qusex  12911  znzrh2  14145
  Copyright terms: Public domain W3C validator