![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eceq2i | GIF version |
Description: Equality theorem for the 𝐴-coset and 𝐵-coset of 𝐶, inference version. (Contributed by Peter Mazsa, 11-May-2021.) |
Ref | Expression |
---|---|
eceq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eceq2i | ⊢ [𝐶]𝐴 = [𝐶]𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eceq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eceq2 6626 | . 2 ⊢ (𝐴 = 𝐵 → [𝐶]𝐴 = [𝐶]𝐵) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ [𝐶]𝐴 = [𝐶]𝐵 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 [cec 6587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-ec 6591 |
This theorem is referenced by: ecqusaddd 13311 |
Copyright terms: Public domain | W3C validator |