ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecqusaddd Unicode version

Theorem ecqusaddd 13368
Description: Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025.)
Hypotheses
Ref Expression
ecqusaddd.i  |-  ( ph  ->  I  e.  (NrmSGrp `  R
) )
ecqusaddd.b  |-  B  =  ( Base `  R
)
ecqusaddd.g  |-  .~  =  ( R ~QG  I )
ecqusaddd.q  |-  Q  =  ( R  /.s  .~  )
Assertion
Ref Expression
ecqusaddd  |-  ( (
ph  /\  ( A  e.  B  /\  C  e.  B ) )  ->  [ ( A ( +g  `  R ) C ) ]  .~  =  ( [ A ]  .~  ( +g  `  Q
) [ C ]  .~  ) )

Proof of Theorem ecqusaddd
StepHypRef Expression
1 ecqusaddd.i . . . . . 6  |-  ( ph  ->  I  e.  (NrmSGrp `  R
) )
21anim1i 340 . . . . 5  |-  ( (
ph  /\  ( A  e.  B  /\  C  e.  B ) )  -> 
( I  e.  (NrmSGrp `  R )  /\  ( A  e.  B  /\  C  e.  B )
) )
3 3anass 984 . . . . 5  |-  ( ( I  e.  (NrmSGrp `  R
)  /\  A  e.  B  /\  C  e.  B
)  <->  ( I  e.  (NrmSGrp `  R )  /\  ( A  e.  B  /\  C  e.  B
) ) )
42, 3sylibr 134 . . . 4  |-  ( (
ph  /\  ( A  e.  B  /\  C  e.  B ) )  -> 
( I  e.  (NrmSGrp `  R )  /\  A  e.  B  /\  C  e.  B ) )
5 ecqusaddd.q . . . . . 6  |-  Q  =  ( R  /.s  .~  )
6 ecqusaddd.g . . . . . . 7  |-  .~  =  ( R ~QG  I )
76oveq2i 5933 . . . . . 6  |-  ( R 
/.s  .~  )  =  ( R  /.s  ( R ~QG  I ) )
85, 7eqtri 2217 . . . . 5  |-  Q  =  ( R  /.s  ( R ~QG  I
) )
9 ecqusaddd.b . . . . 5  |-  B  =  ( Base `  R
)
10 eqid 2196 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
11 eqid 2196 . . . . 5  |-  ( +g  `  Q )  =  ( +g  `  Q )
128, 9, 10, 11qusadd 13364 . . . 4  |-  ( ( I  e.  (NrmSGrp `  R
)  /\  A  e.  B  /\  C  e.  B
)  ->  ( [ A ] ( R ~QG  I ) ( +g  `  Q
) [ C ]
( R ~QG  I ) )  =  [ ( A ( +g  `  R ) C ) ] ( R ~QG  I ) )
134, 12syl 14 . . 3  |-  ( (
ph  /\  ( A  e.  B  /\  C  e.  B ) )  -> 
( [ A ]
( R ~QG  I ) ( +g  `  Q ) [ C ] ( R ~QG  I ) )  =  [ ( A ( +g  `  R
) C ) ] ( R ~QG  I ) )
146eceq2i 6630 . . . 4  |-  [ A ]  .~  =  [ A ] ( R ~QG  I )
156eceq2i 6630 . . . 4  |-  [ C ]  .~  =  [ C ] ( R ~QG  I )
1614, 15oveq12i 5934 . . 3  |-  ( [ A ]  .~  ( +g  `  Q ) [ C ]  .~  )  =  ( [ A ] ( R ~QG  I ) ( +g  `  Q
) [ C ]
( R ~QG  I ) )
176eceq2i 6630 . . 3  |-  [ ( A ( +g  `  R
) C ) ]  .~  =  [ ( A ( +g  `  R
) C ) ] ( R ~QG  I )
1813, 16, 173eqtr4g 2254 . 2  |-  ( (
ph  /\  ( A  e.  B  /\  C  e.  B ) )  -> 
( [ A ]  .~  ( +g  `  Q
) [ C ]  .~  )  =  [
( A ( +g  `  R ) C ) ]  .~  )
1918eqcomd 2202 1  |-  ( (
ph  /\  ( A  e.  B  /\  C  e.  B ) )  ->  [ ( A ( +g  `  R ) C ) ]  .~  =  ( [ A ]  .~  ( +g  `  Q
) [ C ]  .~  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922   [cec 6590   Basecbs 12678   +g cplusg 12755    /.s cqus 12943  NrmSGrpcnsg 13298   ~QG cqg 13299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-er 6592  df-ec 6594  df-qs 6598  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-iimas 12945  df-qus 12946  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-subg 13300  df-nsg 13301  df-eqg 13302
This theorem is referenced by:  ecqusaddcl  13369
  Copyright terms: Public domain W3C validator