ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecqusaddd Unicode version

Theorem ecqusaddd 13311
Description: Addition of equivalence classes in a quotient group. (Contributed by AV, 25-Feb-2025.)
Hypotheses
Ref Expression
ecqusaddd.i  |-  ( ph  ->  I  e.  (NrmSGrp `  R
) )
ecqusaddd.b  |-  B  =  ( Base `  R
)
ecqusaddd.g  |-  .~  =  ( R ~QG  I )
ecqusaddd.q  |-  Q  =  ( R  /.s  .~  )
Assertion
Ref Expression
ecqusaddd  |-  ( (
ph  /\  ( A  e.  B  /\  C  e.  B ) )  ->  [ ( A ( +g  `  R ) C ) ]  .~  =  ( [ A ]  .~  ( +g  `  Q
) [ C ]  .~  ) )

Proof of Theorem ecqusaddd
StepHypRef Expression
1 ecqusaddd.i . . . . . 6  |-  ( ph  ->  I  e.  (NrmSGrp `  R
) )
21anim1i 340 . . . . 5  |-  ( (
ph  /\  ( A  e.  B  /\  C  e.  B ) )  -> 
( I  e.  (NrmSGrp `  R )  /\  ( A  e.  B  /\  C  e.  B )
) )
3 3anass 984 . . . . 5  |-  ( ( I  e.  (NrmSGrp `  R
)  /\  A  e.  B  /\  C  e.  B
)  <->  ( I  e.  (NrmSGrp `  R )  /\  ( A  e.  B  /\  C  e.  B
) ) )
42, 3sylibr 134 . . . 4  |-  ( (
ph  /\  ( A  e.  B  /\  C  e.  B ) )  -> 
( I  e.  (NrmSGrp `  R )  /\  A  e.  B  /\  C  e.  B ) )
5 ecqusaddd.q . . . . . 6  |-  Q  =  ( R  /.s  .~  )
6 ecqusaddd.g . . . . . . 7  |-  .~  =  ( R ~QG  I )
76oveq2i 5930 . . . . . 6  |-  ( R 
/.s  .~  )  =  ( R  /.s  ( R ~QG  I ) )
85, 7eqtri 2214 . . . . 5  |-  Q  =  ( R  /.s  ( R ~QG  I
) )
9 ecqusaddd.b . . . . 5  |-  B  =  ( Base `  R
)
10 eqid 2193 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
11 eqid 2193 . . . . 5  |-  ( +g  `  Q )  =  ( +g  `  Q )
128, 9, 10, 11qusadd 13307 . . . 4  |-  ( ( I  e.  (NrmSGrp `  R
)  /\  A  e.  B  /\  C  e.  B
)  ->  ( [ A ] ( R ~QG  I ) ( +g  `  Q
) [ C ]
( R ~QG  I ) )  =  [ ( A ( +g  `  R ) C ) ] ( R ~QG  I ) )
134, 12syl 14 . . 3  |-  ( (
ph  /\  ( A  e.  B  /\  C  e.  B ) )  -> 
( [ A ]
( R ~QG  I ) ( +g  `  Q ) [ C ] ( R ~QG  I ) )  =  [ ( A ( +g  `  R
) C ) ] ( R ~QG  I ) )
146eceq2i 6627 . . . 4  |-  [ A ]  .~  =  [ A ] ( R ~QG  I )
156eceq2i 6627 . . . 4  |-  [ C ]  .~  =  [ C ] ( R ~QG  I )
1614, 15oveq12i 5931 . . 3  |-  ( [ A ]  .~  ( +g  `  Q ) [ C ]  .~  )  =  ( [ A ] ( R ~QG  I ) ( +g  `  Q
) [ C ]
( R ~QG  I ) )
176eceq2i 6627 . . 3  |-  [ ( A ( +g  `  R
) C ) ]  .~  =  [ ( A ( +g  `  R
) C ) ] ( R ~QG  I )
1813, 16, 173eqtr4g 2251 . 2  |-  ( (
ph  /\  ( A  e.  B  /\  C  e.  B ) )  -> 
( [ A ]  .~  ( +g  `  Q
) [ C ]  .~  )  =  [
( A ( +g  `  R ) C ) ]  .~  )
1918eqcomd 2199 1  |-  ( (
ph  /\  ( A  e.  B  /\  C  e.  B ) )  ->  [ ( A ( +g  `  R ) C ) ]  .~  =  ( [ A ]  .~  ( +g  `  Q
) [ C ]  .~  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5255  (class class class)co 5919   [cec 6587   Basecbs 12621   +g cplusg 12698    /.s cqus 12886  NrmSGrpcnsg 13241   ~QG cqg 13242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-er 6589  df-ec 6591  df-qs 6595  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-0g 12872  df-iimas 12888  df-qus 12889  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-subg 13243  df-nsg 13244  df-eqg 13245
This theorem is referenced by:  ecqusaddcl  13312
  Copyright terms: Public domain W3C validator