Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spc3egv | Unicode version |
Description: Existential specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.) |
Ref | Expression |
---|---|
spc3egv.1 |
Ref | Expression |
---|---|
spc3egv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2744 | . . . 4 | |
2 | elisset 2744 | . . . 4 | |
3 | elisset 2744 | . . . 4 | |
4 | 1, 2, 3 | 3anim123i 1179 | . . 3 |
5 | eeeanv 1926 | . . 3 | |
6 | 4, 5 | sylibr 133 | . 2 |
7 | spc3egv.1 | . . . . 5 | |
8 | 7 | biimprcd 159 | . . . 4 |
9 | 8 | eximdv 1873 | . . 3 |
10 | 9 | 2eximdv 1875 | . 2 |
11 | 6, 10 | syl5com 29 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 w3a 973 wceq 1348 wex 1485 wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |