| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spc3egv | Unicode version | ||
| Description: Existential specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.) |
| Ref | Expression |
|---|---|
| spc3egv.1 |
|
| Ref | Expression |
|---|---|
| spc3egv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2791 |
. . . 4
| |
| 2 | elisset 2791 |
. . . 4
| |
| 3 | elisset 2791 |
. . . 4
| |
| 4 | 1, 2, 3 | 3anim123i 1187 |
. . 3
|
| 5 | eeeanv 1962 |
. . 3
| |
| 6 | 4, 5 | sylibr 134 |
. 2
|
| 7 | spc3egv.1 |
. . . . 5
| |
| 8 | 7 | biimprcd 160 |
. . . 4
|
| 9 | 8 | eximdv 1904 |
. . 3
|
| 10 | 9 | 2eximdv 1906 |
. 2
|
| 11 | 6, 10 | syl5com 29 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |