| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spc3egv | Unicode version | ||
| Description: Existential specialization with 3 quantifiers, using implicit substitution. (Contributed by NM, 12-May-2008.) |
| Ref | Expression |
|---|---|
| spc3egv.1 |
|
| Ref | Expression |
|---|---|
| spc3egv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2814 |
. . . 4
| |
| 2 | elisset 2814 |
. . . 4
| |
| 3 | elisset 2814 |
. . . 4
| |
| 4 | 1, 2, 3 | 3anim123i 1208 |
. . 3
|
| 5 | eeeanv 1984 |
. . 3
| |
| 6 | 4, 5 | sylibr 134 |
. 2
|
| 7 | spc3egv.1 |
. . . . 5
| |
| 8 | 7 | biimprcd 160 |
. . . 4
|
| 9 | 8 | eximdv 1926 |
. . 3
|
| 10 | 9 | 2eximdv 1928 |
. 2
|
| 11 | 6, 10 | syl5com 29 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |