ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elif Unicode version

Theorem elif 3614
Description: Membership in a conditional operator. (Contributed by NM, 14-Feb-2005.)
Assertion
Ref Expression
elif  |-  ( A  e.  if ( ph ,  B ,  C )  <-> 
( ( ph  /\  A  e.  B )  \/  ( -.  ph  /\  A  e.  C )
) )

Proof of Theorem elif
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elex 2811 . 2  |-  ( A  e.  if ( ph ,  B ,  C )  ->  A  e.  _V )
2 elex 2811 . . . 4  |-  ( A  e.  B  ->  A  e.  _V )
32adantl 277 . . 3  |-  ( (
ph  /\  A  e.  B )  ->  A  e.  _V )
4 elex 2811 . . . 4  |-  ( A  e.  C  ->  A  e.  _V )
54adantl 277 . . 3  |-  ( ( -.  ph  /\  A  e.  C )  ->  A  e.  _V )
63, 5jaoi 721 . 2  |-  ( ( ( ph  /\  A  e.  B )  \/  ( -.  ph  /\  A  e.  C ) )  ->  A  e.  _V )
7 eleq1 2292 . . . . . 6  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
87anbi1d 465 . . . . 5  |-  ( x  =  A  ->  (
( x  e.  B  /\  ph )  <->  ( A  e.  B  /\  ph )
) )
9 eleq1 2292 . . . . . 6  |-  ( x  =  A  ->  (
x  e.  C  <->  A  e.  C ) )
109anbi1d 465 . . . . 5  |-  ( x  =  A  ->  (
( x  e.  C  /\  -.  ph )  <->  ( A  e.  C  /\  -.  ph ) ) )
118, 10orbi12d 798 . . . 4  |-  ( x  =  A  ->  (
( ( x  e.  B  /\  ph )  \/  ( x  e.  C  /\  -.  ph ) )  <-> 
( ( A  e.  B  /\  ph )  \/  ( A  e.  C  /\  -.  ph ) ) ) )
12 df-if 3603 . . . 4  |-  if (
ph ,  B ,  C )  =  {
x  |  ( ( x  e.  B  /\  ph )  \/  ( x  e.  C  /\  -.  ph ) ) }
1311, 12elab2g 2950 . . 3  |-  ( A  e.  _V  ->  ( A  e.  if ( ph ,  B ,  C )  <->  ( ( A  e.  B  /\  ph )  \/  ( A  e.  C  /\  -.  ph ) ) ) )
14 ancom 266 . . . 4  |-  ( ( A  e.  B  /\  ph )  <->  ( ph  /\  A  e.  B )
)
15 ancom 266 . . . 4  |-  ( ( A  e.  C  /\  -.  ph )  <->  ( -.  ph 
/\  A  e.  C
) )
1614, 15orbi12i 769 . . 3  |-  ( ( ( A  e.  B  /\  ph )  \/  ( A  e.  C  /\  -.  ph ) )  <->  ( ( ph  /\  A  e.  B
)  \/  ( -. 
ph  /\  A  e.  C ) ) )
1713, 16bitrdi 196 . 2  |-  ( A  e.  _V  ->  ( A  e.  if ( ph ,  B ,  C )  <->  ( ( ph  /\  A  e.  B
)  \/  ( -. 
ph  /\  A  e.  C ) ) ) )
181, 6, 17pm5.21nii 709 1  |-  ( A  e.  if ( ph ,  B ,  C )  <-> 
( ( ph  /\  A  e.  B )  \/  ( -.  ph  /\  A  e.  C )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   _Vcvv 2799   ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-if 3603
This theorem is referenced by:  iftrueb01  7404  pw1if  7406
  Copyright terms: Public domain W3C validator