ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1if Unicode version

Theorem pw1if 7406
Description: Expressing a truth value in terms of an  if expression. (Contributed by Jim Kingdon, 10-Jan-2026.)
Assertion
Ref Expression
pw1if  |-  ( A  e.  ~P 1o  ->  if ( A  =  1o ,  1o ,  (/) )  =  A )

Proof of Theorem pw1if
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . 6  |-  ( ( A  e.  ~P 1o  /\  x  e.  if ( A  =  1o ,  1o ,  (/) ) )  ->  x  e.  if ( A  =  1o ,  1o ,  (/) ) )
2 elif 3614 . . . . . . 7  |-  ( x  e.  if ( A  =  1o ,  1o ,  (/) )  <->  ( ( A  =  1o  /\  x  e.  1o )  \/  ( -.  A  =  1o  /\  x  e.  (/) ) ) )
3 noel 3495 . . . . . . . . 9  |-  -.  x  e.  (/)
43intnan 934 . . . . . . . 8  |-  -.  ( -.  A  =  1o  /\  x  e.  (/) )
54biorfi 751 . . . . . . 7  |-  ( ( A  =  1o  /\  x  e.  1o )  <->  ( ( A  =  1o 
/\  x  e.  1o )  \/  ( -.  A  =  1o  /\  x  e.  (/) ) ) )
62, 5bitr4i 187 . . . . . 6  |-  ( x  e.  if ( A  =  1o ,  1o ,  (/) )  <->  ( A  =  1o  /\  x  e.  1o ) )
71, 6sylib 122 . . . . 5  |-  ( ( A  e.  ~P 1o  /\  x  e.  if ( A  =  1o ,  1o ,  (/) ) )  ->  ( A  =  1o  /\  x  e.  1o ) )
87simprd 114 . . . 4  |-  ( ( A  e.  ~P 1o  /\  x  e.  if ( A  =  1o ,  1o ,  (/) ) )  ->  x  e.  1o )
97simpld 112 . . . 4  |-  ( ( A  e.  ~P 1o  /\  x  e.  if ( A  =  1o ,  1o ,  (/) ) )  ->  A  =  1o )
108, 9eleqtrrd 2309 . . 3  |-  ( ( A  e.  ~P 1o  /\  x  e.  if ( A  =  1o ,  1o ,  (/) ) )  ->  x  e.  A
)
11 elex2 2816 . . . . 5  |-  ( x  e.  A  ->  E. y 
y  e.  A )
12 pw1m 7405 . . . . 5  |-  ( ( A  e.  ~P 1o  /\ 
E. y  y  e.  A )  ->  A  =  1o )
1311, 12sylan2 286 . . . 4  |-  ( ( A  e.  ~P 1o  /\  x  e.  A )  ->  A  =  1o )
14 simpr 110 . . . . 5  |-  ( ( A  e.  ~P 1o  /\  x  e.  A )  ->  x  e.  A
)
1514, 13eleqtrd 2308 . . . 4  |-  ( ( A  e.  ~P 1o  /\  x  e.  A )  ->  x  e.  1o )
1613, 15, 6sylanbrc 417 . . 3  |-  ( ( A  e.  ~P 1o  /\  x  e.  A )  ->  x  e.  if ( A  =  1o ,  1o ,  (/) ) )
1710, 16impbida 598 . 2  |-  ( A  e.  ~P 1o  ->  ( x  e.  if ( A  =  1o ,  1o ,  (/) )  <->  x  e.  A ) )
1817eqrdv 2227 1  |-  ( A  e.  ~P 1o  ->  if ( A  =  1o ,  1o ,  (/) )  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200   (/)c0 3491   ifcif 3602   ~Pcpw 3649   1oc1o 6553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-suc 4461  df-1o 6560
This theorem is referenced by:  pw1map  16320
  Copyright terms: Public domain W3C validator