| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1if | Unicode version | ||
| Description: Expressing a truth value
in terms of an |
| Ref | Expression |
|---|---|
| pw1if |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . . 6
| |
| 2 | elif 3587 |
. . . . . . 7
| |
| 3 | noel 3468 |
. . . . . . . . 9
| |
| 4 | 3 | intnan 931 |
. . . . . . . 8
|
| 5 | 4 | biorfi 748 |
. . . . . . 7
|
| 6 | 2, 5 | bitr4i 187 |
. . . . . 6
|
| 7 | 1, 6 | sylib 122 |
. . . . 5
|
| 8 | 7 | simprd 114 |
. . . 4
|
| 9 | 7 | simpld 112 |
. . . 4
|
| 10 | 8, 9 | eleqtrrd 2286 |
. . 3
|
| 11 | elex2 2790 |
. . . . 5
| |
| 12 | pw1m 7355 |
. . . . 5
| |
| 13 | 11, 12 | sylan2 286 |
. . . 4
|
| 14 | simpr 110 |
. . . . 5
| |
| 15 | 14, 13 | eleqtrd 2285 |
. . . 4
|
| 16 | 13, 15, 6 | sylanbrc 417 |
. . 3
|
| 17 | 10, 16 | impbida 596 |
. 2
|
| 18 | 17 | eqrdv 2204 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-suc 4426 df-1o 6515 |
| This theorem is referenced by: pw1map 16073 |
| Copyright terms: Public domain | W3C validator |