| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21nii | Unicode version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 |
|
| pm5.21ni.2 |
|
| pm5.21nii.3 |
|
| Ref | Expression |
|---|---|
| pm5.21nii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ni.1 |
. . . 4
| |
| 2 | pm5.21nii.3 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | 3 | ibi 176 |
. 2
|
| 5 | pm5.21ni.2 |
. . . 4
| |
| 6 | 5, 2 | syl 14 |
. . 3
|
| 7 | 6 | ibir 177 |
. 2
|
| 8 | 4, 7 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anxordi 1419 elrabf 2926 sbcco 3019 sbc5 3021 sbcan 3040 sbcor 3042 sbcal 3049 sbcex2 3051 sbcel1v 3060 eldif 3174 elun 3313 elin 3355 eluni 3852 eliun 3930 elopab 4303 opelopabsb 4305 opeliunxp 4729 opeliunxp2 4817 elxp4 5169 elxp5 5170 fsn2 5753 isocnv2 5880 elxp6 6254 elxp7 6255 opeliunxp2f 6323 brtpos2 6336 tpostpos 6349 ecdmn0m 6663 elixpsn 6821 bren 6834 omniwomnimkv 7268 elinp 7586 recexprlemell 7734 recexprlemelu 7735 gt0srpr 7860 ltresr 7951 eluz2 9653 elfz2 10136 infssuzex 10374 rexanuz2 11273 even2n 12156 infpn2 12798 xpsfrnel2 13149 issubg 13480 isnsg 13509 issrg 13698 iscrng2 13748 isrim0 13894 issubrng 13932 issubrg 13954 rrgval 13995 islssm 14090 islidlm 14212 2idlval 14235 2idlelb 14238 istopon 14456 ishmeo 14747 ismet2 14797 |
| Copyright terms: Public domain | W3C validator |