| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm5.21nii | Unicode version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| pm5.21ni.1 | 
 | 
| pm5.21ni.2 | 
 | 
| pm5.21nii.3 | 
 | 
| Ref | Expression | 
|---|---|
| pm5.21nii | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm5.21ni.1 | 
. . . 4
 | |
| 2 | pm5.21nii.3 | 
. . . 4
 | |
| 3 | 1, 2 | syl 14 | 
. . 3
 | 
| 4 | 3 | ibi 176 | 
. 2
 | 
| 5 | pm5.21ni.2 | 
. . . 4
 | |
| 6 | 5, 2 | syl 14 | 
. . 3
 | 
| 7 | 6 | ibir 177 | 
. 2
 | 
| 8 | 4, 7 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: anxordi 1411 elrabf 2918 sbcco 3011 sbc5 3013 sbcan 3032 sbcor 3034 sbcal 3041 sbcex2 3043 sbcel1v 3052 eldif 3166 elun 3304 elin 3346 eluni 3842 eliun 3920 elopab 4292 opelopabsb 4294 opeliunxp 4718 opeliunxp2 4806 elxp4 5157 elxp5 5158 fsn2 5736 isocnv2 5859 elxp6 6227 elxp7 6228 opeliunxp2f 6296 brtpos2 6309 tpostpos 6322 ecdmn0m 6636 elixpsn 6794 bren 6806 omniwomnimkv 7233 elinp 7541 recexprlemell 7689 recexprlemelu 7690 gt0srpr 7815 ltresr 7906 eluz2 9607 elfz2 10090 infssuzex 10323 rexanuz2 11156 even2n 12039 infpn2 12673 xpsfrnel2 12989 issubg 13303 isnsg 13332 issrg 13521 iscrng2 13571 isrim0 13717 issubrng 13755 issubrg 13777 rrgval 13818 islssm 13913 islidlm 14035 2idlval 14058 2idlelb 14061 istopon 14249 ishmeo 14540 ismet2 14590 | 
| Copyright terms: Public domain | W3C validator |