| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21nii | Unicode version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 |
|
| pm5.21ni.2 |
|
| pm5.21nii.3 |
|
| Ref | Expression |
|---|---|
| pm5.21nii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ni.1 |
. . . 4
| |
| 2 | pm5.21nii.3 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | 3 | ibi 176 |
. 2
|
| 5 | pm5.21ni.2 |
. . . 4
| |
| 6 | 5, 2 | syl 14 |
. . 3
|
| 7 | 6 | ibir 177 |
. 2
|
| 8 | 4, 7 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anxordi 1420 elrabf 2927 sbcco 3020 sbc5 3022 sbcan 3041 sbcor 3043 sbcal 3050 sbcex2 3052 sbcel1v 3061 eldif 3175 elun 3314 elin 3356 eluni 3853 eliun 3931 elopab 4304 opelopabsb 4306 opeliunxp 4730 opeliunxp2 4818 elxp4 5170 elxp5 5171 fsn2 5754 isocnv2 5881 elxp6 6255 elxp7 6256 opeliunxp2f 6324 brtpos2 6337 tpostpos 6350 ecdmn0m 6664 elixpsn 6822 bren 6835 omniwomnimkv 7269 elinp 7587 recexprlemell 7735 recexprlemelu 7736 gt0srpr 7861 ltresr 7952 eluz2 9654 elfz2 10137 infssuzex 10376 rexanuz2 11302 even2n 12185 infpn2 12827 xpsfrnel2 13178 issubg 13509 isnsg 13538 issrg 13727 iscrng2 13777 isrim0 13923 issubrng 13961 issubrg 13983 rrgval 14024 islssm 14119 islidlm 14241 2idlval 14264 2idlelb 14267 istopon 14485 ishmeo 14776 ismet2 14826 |
| Copyright terms: Public domain | W3C validator |