![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.21nii | Unicode version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm5.21ni.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
pm5.21ni.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
pm5.21nii.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm5.21nii |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ni.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm5.21nii.3 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | ibi 176 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | pm5.21ni.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5, 2 | syl 14 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | ibir 177 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
8 | 4, 7 | impbii 126 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anxordi 1411 elrabf 2915 sbcco 3008 sbc5 3010 sbcan 3029 sbcor 3031 sbcal 3038 sbcex2 3040 sbcel1v 3049 eldif 3163 elun 3301 elin 3343 eluni 3839 eliun 3917 elopab 4289 opelopabsb 4291 opeliunxp 4715 opeliunxp2 4803 elxp4 5154 elxp5 5155 fsn2 5733 isocnv2 5856 elxp6 6224 elxp7 6225 opeliunxp2f 6293 brtpos2 6306 tpostpos 6319 ecdmn0m 6633 elixpsn 6791 bren 6803 omniwomnimkv 7228 elinp 7536 recexprlemell 7684 recexprlemelu 7685 gt0srpr 7810 ltresr 7901 eluz2 9601 elfz2 10084 rexanuz2 11138 even2n 12018 infssuzex 12089 infpn2 12616 xpsfrnel2 12932 issubg 13246 isnsg 13275 issrg 13464 iscrng2 13514 isrim0 13660 issubrng 13698 issubrg 13720 rrgval 13761 islssm 13856 islidlm 13978 2idlval 14001 2idlelb 14004 istopon 14192 ishmeo 14483 ismet2 14533 |
Copyright terms: Public domain | W3C validator |