ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.21nii Unicode version

Theorem pm5.21nii 706
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypotheses
Ref Expression
pm5.21ni.1  |-  ( ph  ->  ps )
pm5.21ni.2  |-  ( ch 
->  ps )
pm5.21nii.3  |-  ( ps 
->  ( ph  <->  ch )
)
Assertion
Ref Expression
pm5.21nii  |-  ( ph  <->  ch )

Proof of Theorem pm5.21nii
StepHypRef Expression
1 pm5.21ni.1 . . . 4  |-  ( ph  ->  ps )
2 pm5.21nii.3 . . . 4  |-  ( ps 
->  ( ph  <->  ch )
)
31, 2syl 14 . . 3  |-  ( ph  ->  ( ph  <->  ch )
)
43ibi 176 . 2  |-  ( ph  ->  ch )
5 pm5.21ni.2 . . . 4  |-  ( ch 
->  ps )
65, 2syl 14 . . 3  |-  ( ch 
->  ( ph  <->  ch )
)
76ibir 177 . 2  |-  ( ch 
->  ph )
84, 7impbii 126 1  |-  ( ph  <->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  anxordi  1420  elrabf  2927  sbcco  3020  sbc5  3022  sbcan  3041  sbcor  3043  sbcal  3050  sbcex2  3052  sbcel1v  3061  eldif  3175  elun  3314  elin  3356  eluni  3853  eliun  3931  elopab  4304  opelopabsb  4306  opeliunxp  4730  opeliunxp2  4818  elxp4  5170  elxp5  5171  fsn2  5754  isocnv2  5881  elxp6  6255  elxp7  6256  opeliunxp2f  6324  brtpos2  6337  tpostpos  6350  ecdmn0m  6664  elixpsn  6822  bren  6835  omniwomnimkv  7269  elinp  7587  recexprlemell  7735  recexprlemelu  7736  gt0srpr  7861  ltresr  7952  eluz2  9654  elfz2  10137  infssuzex  10376  rexanuz2  11302  even2n  12185  infpn2  12827  xpsfrnel2  13178  issubg  13509  isnsg  13538  issrg  13727  iscrng2  13777  isrim0  13923  issubrng  13961  issubrg  13983  rrgval  14024  islssm  14119  islidlm  14241  2idlval  14264  2idlelb  14267  istopon  14485  ishmeo  14776  ismet2  14826
  Copyright terms: Public domain W3C validator