| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21nii | Unicode version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 |
|
| pm5.21ni.2 |
|
| pm5.21nii.3 |
|
| Ref | Expression |
|---|---|
| pm5.21nii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ni.1 |
. . . 4
| |
| 2 | pm5.21nii.3 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | 3 | ibi 176 |
. 2
|
| 5 | pm5.21ni.2 |
. . . 4
| |
| 6 | 5, 2 | syl 14 |
. . 3
|
| 7 | 6 | ibir 177 |
. 2
|
| 8 | 4, 7 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anxordi 1411 elrabf 2918 sbcco 3011 sbc5 3013 sbcan 3032 sbcor 3034 sbcal 3041 sbcex2 3043 sbcel1v 3052 eldif 3166 elun 3305 elin 3347 eluni 3843 eliun 3921 elopab 4293 opelopabsb 4295 opeliunxp 4719 opeliunxp2 4807 elxp4 5158 elxp5 5159 fsn2 5739 isocnv2 5862 elxp6 6236 elxp7 6237 opeliunxp2f 6305 brtpos2 6318 tpostpos 6331 ecdmn0m 6645 elixpsn 6803 bren 6815 omniwomnimkv 7242 elinp 7558 recexprlemell 7706 recexprlemelu 7707 gt0srpr 7832 ltresr 7923 eluz2 9624 elfz2 10107 infssuzex 10340 rexanuz2 11173 even2n 12056 infpn2 12698 xpsfrnel2 13048 issubg 13379 isnsg 13408 issrg 13597 iscrng2 13647 isrim0 13793 issubrng 13831 issubrg 13853 rrgval 13894 islssm 13989 islidlm 14111 2idlval 14134 2idlelb 14137 istopon 14333 ishmeo 14624 ismet2 14674 |
| Copyright terms: Public domain | W3C validator |