| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21nii | Unicode version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 |
|
| pm5.21ni.2 |
|
| pm5.21nii.3 |
|
| Ref | Expression |
|---|---|
| pm5.21nii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ni.1 |
. . . 4
| |
| 2 | pm5.21nii.3 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | 3 | ibi 176 |
. 2
|
| 5 | pm5.21ni.2 |
. . . 4
| |
| 6 | 5, 2 | syl 14 |
. . 3
|
| 7 | 6 | ibir 177 |
. 2
|
| 8 | 4, 7 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anxordi 1420 elrabf 2934 sbcco 3027 sbc5 3029 sbcan 3048 sbcor 3050 sbcal 3057 sbcex2 3059 sbcel1v 3068 eldif 3183 elun 3322 elin 3364 elif 3591 eluni 3867 eliun 3945 elopab 4322 opelopabsb 4324 opeliunxp 4748 opeliunxp2 4836 elxp4 5189 elxp5 5190 fsn2 5777 isocnv2 5904 elxp6 6278 elxp7 6279 opeliunxp2f 6347 brtpos2 6360 tpostpos 6373 ecdmn0m 6687 elixpsn 6845 bren 6858 omniwomnimkv 7295 elinp 7622 recexprlemell 7770 recexprlemelu 7771 gt0srpr 7896 ltresr 7987 eluz2 9689 elfz2 10172 infssuzex 10413 rexanuz2 11417 even2n 12300 infpn2 12942 xpsfrnel2 13293 issubg 13624 isnsg 13653 issrg 13842 iscrng2 13892 isrim0 14038 issubrng 14076 issubrg 14098 rrgval 14139 islssm 14234 islidlm 14356 2idlval 14379 2idlelb 14382 istopon 14600 ishmeo 14891 ismet2 14941 |
| Copyright terms: Public domain | W3C validator |