![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.21nii | Unicode version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm5.21ni.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
pm5.21ni.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
pm5.21nii.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm5.21nii |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ni.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm5.21nii.3 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | ibi 175 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | pm5.21ni.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5, 2 | syl 14 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | ibir 176 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
8 | 4, 7 | impbii 125 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: anxordi 1346 elrabf 2791 sbcco 2883 sbc5 2885 sbcan 2903 sbcor 2905 sbcal 2912 sbcex2 2914 sbcel1v 2923 eldif 3030 elun 3164 elin 3206 eluni 3686 eliun 3764 elopab 4118 opelopabsb 4120 opeliunxp 4532 opeliunxp2 4617 elxp4 4962 elxp5 4963 fsn2 5526 isocnv2 5645 elxp6 5998 elxp7 5999 opeliunxp2f 6065 brtpos2 6078 tpostpos 6091 ecdmn0m 6401 elixpsn 6559 bren 6571 elinp 7183 recexprlemell 7331 recexprlemelu 7332 gt0srpr 7444 ltresr 7526 eluz2 9182 elfz2 9638 rexanuz2 10603 even2n 11366 infssuzex 11437 istopon 11962 ismet2 12282 |
Copyright terms: Public domain | W3C validator |