![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.21nii | Unicode version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm5.21ni.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
pm5.21ni.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
pm5.21nii.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm5.21nii |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21ni.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm5.21nii.3 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | ibi 176 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | pm5.21ni.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5, 2 | syl 14 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | ibir 177 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
8 | 4, 7 | impbii 126 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: anxordi 1400 elrabf 2891 sbcco 2984 sbc5 2986 sbcan 3005 sbcor 3007 sbcal 3014 sbcex2 3016 sbcel1v 3025 eldif 3138 elun 3276 elin 3318 eluni 3812 eliun 3890 elopab 4258 opelopabsb 4260 opeliunxp 4681 opeliunxp2 4767 elxp4 5116 elxp5 5117 fsn2 5690 isocnv2 5812 elxp6 6169 elxp7 6170 opeliunxp2f 6238 brtpos2 6251 tpostpos 6264 ecdmn0m 6576 elixpsn 6734 bren 6746 omniwomnimkv 7164 elinp 7472 recexprlemell 7620 recexprlemelu 7621 gt0srpr 7746 ltresr 7837 eluz2 9533 elfz2 10014 rexanuz2 10999 even2n 11878 infssuzex 11949 infpn2 12456 xpsfrnel2 12764 issubg 13031 isnsg 13060 issrg 13146 iscrng2 13196 issubrg 13340 istopon 13483 ishmeo 13774 ismet2 13824 |
Copyright terms: Public domain | W3C validator |