| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.21nii | Unicode version | ||
| Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm5.21ni.1 |
|
| pm5.21ni.2 |
|
| pm5.21nii.3 |
|
| Ref | Expression |
|---|---|
| pm5.21nii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.21ni.1 |
. . . 4
| |
| 2 | pm5.21nii.3 |
. . . 4
| |
| 3 | 1, 2 | syl 14 |
. . 3
|
| 4 | 3 | ibi 176 |
. 2
|
| 5 | pm5.21ni.2 |
. . . 4
| |
| 6 | 5, 2 | syl 14 |
. . 3
|
| 7 | 6 | ibir 177 |
. 2
|
| 8 | 4, 7 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: anxordi 1442 elrabf 2957 sbcco 3050 sbc5 3052 sbcan 3071 sbcor 3073 sbcal 3080 sbcex2 3082 sbcel1v 3091 eldif 3206 elun 3345 elin 3387 elif 3614 eluni 3890 eliun 3968 elopab 4345 opelopabsb 4347 opeliunxp 4773 opeliunxp2 4861 elxp4 5215 elxp5 5216 fsn2 5808 isocnv2 5935 elxp6 6313 elxp7 6314 opeliunxp2f 6382 brtpos2 6395 tpostpos 6408 ecdmn0m 6722 elixpsn 6880 bren 6893 omniwomnimkv 7330 elinp 7657 recexprlemell 7805 recexprlemelu 7806 gt0srpr 7931 ltresr 8022 eluz2 9724 elfz2 10207 infssuzex 10448 rexanuz2 11497 even2n 12380 infpn2 13022 xpsfrnel2 13374 issubg 13705 isnsg 13734 issrg 13923 iscrng2 13973 isrim0 14119 issubrng 14157 issubrg 14179 rrgval 14220 islssm 14315 islidlm 14437 2idlval 14460 2idlelb 14463 istopon 14681 ishmeo 14972 ismet2 15022 |
| Copyright terms: Public domain | W3C validator |