| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftrueb01 | Unicode version | ||
| Description: Using an |
| Ref | Expression |
|---|---|
| iftrueb01 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1o 6584 |
. . . 4
| |
| 2 | elex2 2816 |
. . . 4
| |
| 3 | 1, 2 | ax-mp 5 |
. . 3
|
| 4 | eleq2 2293 |
. . . . . 6
| |
| 5 | elif 3614 |
. . . . . . 7
| |
| 6 | noel 3495 |
. . . . . . . . 9
| |
| 7 | 6 | intnan 934 |
. . . . . . . 8
|
| 8 | 7 | biorfi 751 |
. . . . . . 7
|
| 9 | 5, 8 | bitr4i 187 |
. . . . . 6
|
| 10 | 4, 9 | bitr3di 195 |
. . . . 5
|
| 11 | pm4.71r 390 |
. . . . 5
| |
| 12 | 10, 11 | sylibr 134 |
. . . 4
|
| 13 | 12 | exlimdv 1865 |
. . 3
|
| 14 | 3, 13 | mpi 15 |
. 2
|
| 15 | iftrue 3607 |
. 2
| |
| 16 | 14, 15 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-nul 4209 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 df-if 3603 df-sn 3672 df-suc 4461 df-1o 6560 |
| This theorem is referenced by: pw1map 16320 |
| Copyright terms: Public domain | W3C validator |