ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iftrueb01 Unicode version

Theorem iftrueb01 7354
Description: Using an  if expression to represent a truth value by  (/) or  1o. Unlike some theorems using  if,  ph does not need to be decidable. (Contributed by Jim Kingdon, 9-Jan-2026.)
Assertion
Ref Expression
iftrueb01  |-  ( if ( ph ,  1o ,  (/) )  =  1o  <->  ph )

Proof of Theorem iftrueb01
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0lt1o 6539 . . . 4  |-  (/)  e.  1o
2 elex2 2790 . . . 4  |-  ( (/)  e.  1o  ->  E. x  x  e.  1o )
31, 2ax-mp 5 . . 3  |-  E. x  x  e.  1o
4 eleq2 2270 . . . . . 6  |-  ( if ( ph ,  1o ,  (/) )  =  1o 
->  ( x  e.  if ( ph ,  1o ,  (/) )  <->  x  e.  1o ) )
5 elif 3587 . . . . . . 7  |-  ( x  e.  if ( ph ,  1o ,  (/) )  <->  ( ( ph  /\  x  e.  1o )  \/  ( -.  ph 
/\  x  e.  (/) ) ) )
6 noel 3468 . . . . . . . . 9  |-  -.  x  e.  (/)
76intnan 931 . . . . . . . 8  |-  -.  ( -.  ph  /\  x  e.  (/) )
87biorfi 748 . . . . . . 7  |-  ( (
ph  /\  x  e.  1o )  <->  ( ( ph  /\  x  e.  1o )  \/  ( -.  ph  /\  x  e.  (/) ) ) )
95, 8bitr4i 187 . . . . . 6  |-  ( x  e.  if ( ph ,  1o ,  (/) )  <->  ( ph  /\  x  e.  1o ) )
104, 9bitr3di 195 . . . . 5  |-  ( if ( ph ,  1o ,  (/) )  =  1o 
->  ( x  e.  1o  <->  (
ph  /\  x  e.  1o ) ) )
11 pm4.71r 390 . . . . 5  |-  ( ( x  e.  1o  ->  ph )  <->  ( x  e.  1o  <->  ( ph  /\  x  e.  1o )
) )
1210, 11sylibr 134 . . . 4  |-  ( if ( ph ,  1o ,  (/) )  =  1o 
->  ( x  e.  1o  ->  ph ) )
1312exlimdv 1843 . . 3  |-  ( if ( ph ,  1o ,  (/) )  =  1o 
->  ( E. x  x  e.  1o  ->  ph )
)
143, 13mpi 15 . 2  |-  ( if ( ph ,  1o ,  (/) )  =  1o 
->  ph )
15 iftrue 3580 . 2  |-  ( ph  ->  if ( ph ,  1o ,  (/) )  =  1o )
1614, 15impbii 126 1  |-  ( if ( ph ,  1o ,  (/) )  =  1o  <->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2177   (/)c0 3464   ifcif 3575   1oc1o 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-nul 4178
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-un 3174  df-nul 3465  df-if 3576  df-sn 3644  df-suc 4426  df-1o 6515
This theorem is referenced by:  pw1map  16073
  Copyright terms: Public domain W3C validator