ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iftrueb01 Unicode version

Theorem iftrueb01 7404
Description: Using an  if expression to represent a truth value by  (/) or  1o. Unlike some theorems using  if,  ph does not need to be decidable. (Contributed by Jim Kingdon, 9-Jan-2026.)
Assertion
Ref Expression
iftrueb01  |-  ( if ( ph ,  1o ,  (/) )  =  1o  <->  ph )

Proof of Theorem iftrueb01
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0lt1o 6584 . . . 4  |-  (/)  e.  1o
2 elex2 2816 . . . 4  |-  ( (/)  e.  1o  ->  E. x  x  e.  1o )
31, 2ax-mp 5 . . 3  |-  E. x  x  e.  1o
4 eleq2 2293 . . . . . 6  |-  ( if ( ph ,  1o ,  (/) )  =  1o 
->  ( x  e.  if ( ph ,  1o ,  (/) )  <->  x  e.  1o ) )
5 elif 3614 . . . . . . 7  |-  ( x  e.  if ( ph ,  1o ,  (/) )  <->  ( ( ph  /\  x  e.  1o )  \/  ( -.  ph 
/\  x  e.  (/) ) ) )
6 noel 3495 . . . . . . . . 9  |-  -.  x  e.  (/)
76intnan 934 . . . . . . . 8  |-  -.  ( -.  ph  /\  x  e.  (/) )
87biorfi 751 . . . . . . 7  |-  ( (
ph  /\  x  e.  1o )  <->  ( ( ph  /\  x  e.  1o )  \/  ( -.  ph  /\  x  e.  (/) ) ) )
95, 8bitr4i 187 . . . . . 6  |-  ( x  e.  if ( ph ,  1o ,  (/) )  <->  ( ph  /\  x  e.  1o ) )
104, 9bitr3di 195 . . . . 5  |-  ( if ( ph ,  1o ,  (/) )  =  1o 
->  ( x  e.  1o  <->  (
ph  /\  x  e.  1o ) ) )
11 pm4.71r 390 . . . . 5  |-  ( ( x  e.  1o  ->  ph )  <->  ( x  e.  1o  <->  ( ph  /\  x  e.  1o )
) )
1210, 11sylibr 134 . . . 4  |-  ( if ( ph ,  1o ,  (/) )  =  1o 
->  ( x  e.  1o  ->  ph ) )
1312exlimdv 1865 . . 3  |-  ( if ( ph ,  1o ,  (/) )  =  1o 
->  ( E. x  x  e.  1o  ->  ph )
)
143, 13mpi 15 . 2  |-  ( if ( ph ,  1o ,  (/) )  =  1o 
->  ph )
15 iftrue 3607 . 2  |-  ( ph  ->  if ( ph ,  1o ,  (/) )  =  1o )
1614, 15impbii 126 1  |-  ( if ( ph ,  1o ,  (/) )  =  1o  <->  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200   (/)c0 3491   ifcif 3602   1oc1o 6553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-nul 4209
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-if 3603  df-sn 3672  df-suc 4461  df-1o 6560
This theorem is referenced by:  pw1map  16320
  Copyright terms: Public domain W3C validator