ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnefalse Unicode version

Theorem ifnefalse 3451
Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 3448 directly in this case. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
ifnefalse  |-  ( A  =/=  B  ->  if ( A  =  B ,  C ,  D )  =  D )

Proof of Theorem ifnefalse
StepHypRef Expression
1 df-ne 2283 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 iffalse 3448 . 2  |-  ( -.  A  =  B  ->  if ( A  =  B ,  C ,  D
)  =  D )
31, 2sylbi 120 1  |-  ( A  =/=  B  ->  if ( A  =  B ,  C ,  D )  =  D )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1314    =/= wne 2282   ifcif 3440
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-11 1467  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-ne 2283  df-if 3441
This theorem is referenced by:  xnegmnf  9505  rexneg  9506  xaddpnf1  9522  xaddpnf2  9523  xaddmnf1  9524  xaddmnf2  9525  mnfaddpnf  9527  rexadd  9528  fztpval  9756
  Copyright terms: Public domain W3C validator