ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnefalse Unicode version

Theorem ifnefalse 3531
Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 3528 directly in this case. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
ifnefalse  |-  ( A  =/=  B  ->  if ( A  =  B ,  C ,  D )  =  D )

Proof of Theorem ifnefalse
StepHypRef Expression
1 df-ne 2337 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 iffalse 3528 . 2  |-  ( -.  A  =  B  ->  if ( A  =  B ,  C ,  D
)  =  D )
31, 2sylbi 120 1  |-  ( A  =/=  B  ->  if ( A  =  B ,  C ,  D )  =  D )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1343    =/= wne 2336   ifcif 3520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-ne 2337  df-if 3521
This theorem is referenced by:  xnegmnf  9765  rexneg  9766  xaddpnf1  9782  xaddpnf2  9783  xaddmnf1  9784  xaddmnf2  9785  mnfaddpnf  9787  rexadd  9788  fztpval  10018  pcval  12228  lgsval3  13559  lgsdinn0  13589
  Copyright terms: Public domain W3C validator