ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifnefalse Unicode version

Theorem ifnefalse 3613
Description: When values are unequal, but an "if" condition checks if they are equal, then the "false" branch results. This is a simple utility to provide a slight shortening and simplification of proofs versus applying iffalse 3610 directly in this case. (Contributed by David A. Wheeler, 15-May-2015.)
Assertion
Ref Expression
ifnefalse  |-  ( A  =/=  B  ->  if ( A  =  B ,  C ,  D )  =  D )

Proof of Theorem ifnefalse
StepHypRef Expression
1 df-ne 2401 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 iffalse 3610 . 2  |-  ( -.  A  =  B  ->  if ( A  =  B ,  C ,  D
)  =  D )
31, 2sylbi 121 1  |-  ( A  =/=  B  ->  if ( A  =  B ,  C ,  D )  =  D )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1395    =/= wne 2400   ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ne 2401  df-if 3603
This theorem is referenced by:  xnegmnf  10021  rexneg  10022  xaddpnf1  10038  xaddpnf2  10039  xaddmnf1  10040  xaddmnf2  10041  mnfaddpnf  10043  rexadd  10044  fztpval  10275  pcval  12814  xpsfrnel  13372  znf1o  14609  znfi  14613  znhash  14614  lgsval3  15691  lgsdinn0  15721
  Copyright terms: Public domain W3C validator