| Step | Hyp | Ref
| Expression |
| 1 | | elex 2785 |
. 2
⊢ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) → 𝐴 ∈ V) |
| 2 | | elex 2785 |
. . . 4
⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) |
| 3 | 2 | adantl 277 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ∈ 𝐵) → 𝐴 ∈ V) |
| 4 | | elex 2785 |
. . . 4
⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) |
| 5 | 4 | adantl 277 |
. . 3
⊢ ((¬
𝜑 ∧ 𝐴 ∈ 𝐶) → 𝐴 ∈ V) |
| 6 | 3, 5 | jaoi 718 |
. 2
⊢ (((𝜑 ∧ 𝐴 ∈ 𝐵) ∨ (¬ 𝜑 ∧ 𝐴 ∈ 𝐶)) → 𝐴 ∈ V) |
| 7 | | eleq1 2269 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) |
| 8 | 7 | anbi1d 465 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜑))) |
| 9 | | eleq1 2269 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) |
| 10 | 9 | anbi1d 465 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐶 ∧ ¬ 𝜑) ↔ (𝐴 ∈ 𝐶 ∧ ¬ 𝜑))) |
| 11 | 8, 10 | orbi12d 795 |
. . . 4
⊢ (𝑥 = 𝐴 → (((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐶 ∧ ¬ 𝜑)) ↔ ((𝐴 ∈ 𝐵 ∧ 𝜑) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝜑)))) |
| 12 | | df-if 3576 |
. . . 4
⊢ if(𝜑, 𝐵, 𝐶) = {𝑥 ∣ ((𝑥 ∈ 𝐵 ∧ 𝜑) ∨ (𝑥 ∈ 𝐶 ∧ ¬ 𝜑))} |
| 13 | 11, 12 | elab2g 2924 |
. . 3
⊢ (𝐴 ∈ V → (𝐴 ∈ if(𝜑, 𝐵, 𝐶) ↔ ((𝐴 ∈ 𝐵 ∧ 𝜑) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝜑)))) |
| 14 | | ancom 266 |
. . . 4
⊢ ((𝐴 ∈ 𝐵 ∧ 𝜑) ↔ (𝜑 ∧ 𝐴 ∈ 𝐵)) |
| 15 | | ancom 266 |
. . . 4
⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝜑) ↔ (¬ 𝜑 ∧ 𝐴 ∈ 𝐶)) |
| 16 | 14, 15 | orbi12i 766 |
. . 3
⊢ (((𝐴 ∈ 𝐵 ∧ 𝜑) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝜑)) ↔ ((𝜑 ∧ 𝐴 ∈ 𝐵) ∨ (¬ 𝜑 ∧ 𝐴 ∈ 𝐶))) |
| 17 | 13, 16 | bitrdi 196 |
. 2
⊢ (𝐴 ∈ V → (𝐴 ∈ if(𝜑, 𝐵, 𝐶) ↔ ((𝜑 ∧ 𝐴 ∈ 𝐵) ∨ (¬ 𝜑 ∧ 𝐴 ∈ 𝐶)))) |
| 18 | 1, 6, 17 | pm5.21nii 706 |
1
⊢ (𝐴 ∈ if(𝜑, 𝐵, 𝐶) ↔ ((𝜑 ∧ 𝐴 ∈ 𝐵) ∨ (¬ 𝜑 ∧ 𝐴 ∈ 𝐶))) |