ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwpw GIF version

Theorem elpwpw 3959
Description: Characterization of the elements of a double power class: they are exactly the sets whose union is included in that class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
elpwpw (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵))

Proof of Theorem elpwpw
StepHypRef Expression
1 elpwb 3576 . 2 (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝐵))
2 sspwuni 3957 . . 3 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
32anbi2i 454 . 2 ((𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝐵) ↔ (𝐴 ∈ V ∧ 𝐴𝐵))
41, 3bitri 183 1 (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wcel 2141  Vcvv 2730  wss 3121  𝒫 cpw 3566   cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-uni 3797
This theorem is referenced by:  pwpwab  3960  elpwpwel  4460
  Copyright terms: Public domain W3C validator