ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsss Unicode version

Theorem qsss 6367
Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
qsss.1  |-  ( ph  ->  R  Er  A )
Assertion
Ref Expression
qsss  |-  ( ph  ->  ( A /. R
)  C_  ~P A
)

Proof of Theorem qsss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2625 . . . 4  |-  x  e. 
_V
21elqs 6359 . . 3  |-  ( x  e.  ( A /. R )  <->  E. y  e.  A  x  =  [ y ] R
)
3 qsss.1 . . . . . . 7  |-  ( ph  ->  R  Er  A )
43ecss 6349 . . . . . 6  |-  ( ph  ->  [ y ] R  C_  A )
5 sseq1 3050 . . . . . 6  |-  ( x  =  [ y ] R  ->  ( x  C_  A  <->  [ y ] R  C_  A ) )
64, 5syl5ibrcom 156 . . . . 5  |-  ( ph  ->  ( x  =  [
y ] R  ->  x  C_  A ) )
7 selpw 3442 . . . . 5  |-  ( x  e.  ~P A  <->  x  C_  A
)
86, 7syl6ibr 161 . . . 4  |-  ( ph  ->  ( x  =  [
y ] R  ->  x  e.  ~P A
) )
98rexlimdvw 2495 . . 3  |-  ( ph  ->  ( E. y  e.  A  x  =  [
y ] R  ->  x  e.  ~P A
) )
102, 9syl5bi 151 . 2  |-  ( ph  ->  ( x  e.  ( A /. R )  ->  x  e.  ~P A ) )
1110ssrdv 3034 1  |-  ( ph  ->  ( A /. R
)  C_  ~P A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290    e. wcel 1439   E.wrex 2361    C_ wss 3002   ~Pcpw 3435    Er wer 6305   [cec 6306   /.cqs 6307
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2624  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-br 3854  df-opab 3908  df-xp 4460  df-rel 4461  df-cnv 4462  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-er 6308  df-ec 6310  df-qs 6314
This theorem is referenced by:  axcnex  7459
  Copyright terms: Public domain W3C validator