ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsss Unicode version

Theorem qsss 6560
Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
qsss.1  |-  ( ph  ->  R  Er  A )
Assertion
Ref Expression
qsss  |-  ( ph  ->  ( A /. R
)  C_  ~P A
)

Proof of Theorem qsss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . . 4  |-  x  e. 
_V
21elqs 6552 . . 3  |-  ( x  e.  ( A /. R )  <->  E. y  e.  A  x  =  [ y ] R
)
3 qsss.1 . . . . . . 7  |-  ( ph  ->  R  Er  A )
43ecss 6542 . . . . . 6  |-  ( ph  ->  [ y ] R  C_  A )
5 sseq1 3165 . . . . . 6  |-  ( x  =  [ y ] R  ->  ( x  C_  A  <->  [ y ] R  C_  A ) )
64, 5syl5ibrcom 156 . . . . 5  |-  ( ph  ->  ( x  =  [
y ] R  ->  x  C_  A ) )
7 velpw 3566 . . . . 5  |-  ( x  e.  ~P A  <->  x  C_  A
)
86, 7syl6ibr 161 . . . 4  |-  ( ph  ->  ( x  =  [
y ] R  ->  x  e.  ~P A
) )
98rexlimdvw 2587 . . 3  |-  ( ph  ->  ( E. y  e.  A  x  =  [
y ] R  ->  x  e.  ~P A
) )
102, 9syl5bi 151 . 2  |-  ( ph  ->  ( x  e.  ( A /. R )  ->  x  e.  ~P A ) )
1110ssrdv 3148 1  |-  ( ph  ->  ( A /. R
)  C_  ~P A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   E.wrex 2445    C_ wss 3116   ~Pcpw 3559    Er wer 6498   [cec 6499   /.cqs 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-er 6501  df-ec 6503  df-qs 6507
This theorem is referenced by:  axcnex  7800
  Copyright terms: Public domain W3C validator