ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsss Unicode version

Theorem qsss 6704
Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
qsss.1  |-  ( ph  ->  R  Er  A )
Assertion
Ref Expression
qsss  |-  ( ph  ->  ( A /. R
)  C_  ~P A
)

Proof of Theorem qsss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2779 . . . 4  |-  x  e. 
_V
21elqs 6696 . . 3  |-  ( x  e.  ( A /. R )  <->  E. y  e.  A  x  =  [ y ] R
)
3 qsss.1 . . . . . . 7  |-  ( ph  ->  R  Er  A )
43ecss 6686 . . . . . 6  |-  ( ph  ->  [ y ] R  C_  A )
5 sseq1 3224 . . . . . 6  |-  ( x  =  [ y ] R  ->  ( x  C_  A  <->  [ y ] R  C_  A ) )
64, 5syl5ibrcom 157 . . . . 5  |-  ( ph  ->  ( x  =  [
y ] R  ->  x  C_  A ) )
7 velpw 3633 . . . . 5  |-  ( x  e.  ~P A  <->  x  C_  A
)
86, 7imbitrrdi 162 . . . 4  |-  ( ph  ->  ( x  =  [
y ] R  ->  x  e.  ~P A
) )
98rexlimdvw 2629 . . 3  |-  ( ph  ->  ( E. y  e.  A  x  =  [
y ] R  ->  x  e.  ~P A
) )
102, 9biimtrid 152 . 2  |-  ( ph  ->  ( x  e.  ( A /. R )  ->  x  e.  ~P A ) )
1110ssrdv 3207 1  |-  ( ph  ->  ( A /. R
)  C_  ~P A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   E.wrex 2487    C_ wss 3174   ~Pcpw 3626    Er wer 6640   [cec 6641   /.cqs 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-er 6643  df-ec 6645  df-qs 6649
This theorem is referenced by:  axcnex  8007
  Copyright terms: Public domain W3C validator