ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsid Unicode version

Theorem qsid 6566
Description: A set is equal to its quotient set mod converse epsilon. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
qsid  |-  ( A /. `'  _E  )  =  A

Proof of Theorem qsid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . . . . . 7  |-  x  e. 
_V
21ecid 6564 . . . . . 6  |-  [ x ] `'  _E  =  x
32eqeq2i 2176 . . . . 5  |-  ( y  =  [ x ] `'  _E  <->  y  =  x )
4 equcom 1694 . . . . 5  |-  ( y  =  x  <->  x  =  y )
53, 4bitri 183 . . . 4  |-  ( y  =  [ x ] `'  _E  <->  x  =  y
)
65rexbii 2473 . . 3  |-  ( E. x  e.  A  y  =  [ x ] `'  _E  <->  E. x  e.  A  x  =  y )
7 vex 2729 . . . 4  |-  y  e. 
_V
87elqs 6552 . . 3  |-  ( y  e.  ( A /. `'  _E  )  <->  E. x  e.  A  y  =  [ x ] `'  _E  )
9 risset 2494 . . 3  |-  ( y  e.  A  <->  E. x  e.  A  x  =  y )
106, 8, 93bitr4i 211 . 2  |-  ( y  e.  ( A /. `'  _E  )  <->  y  e.  A )
1110eqriv 2162 1  |-  ( A /. `'  _E  )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   E.wrex 2445    _E cep 4265   `'ccnv 4603   [cec 6499   /.cqs 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-eprel 4267  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-ec 6503  df-qs 6507
This theorem is referenced by:  dfcnqs  7782
  Copyright terms: Public domain W3C validator