Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qsid | Unicode version |
Description: A set is equal to its quotient set mod converse epsilon. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
qsid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . . . . 7 | |
2 | 1 | ecid 6576 | . . . . . 6 |
3 | 2 | eqeq2i 2181 | . . . . 5 |
4 | equcom 1699 | . . . . 5 | |
5 | 3, 4 | bitri 183 | . . . 4 |
6 | 5 | rexbii 2477 | . . 3 |
7 | vex 2733 | . . . 4 | |
8 | 7 | elqs 6564 | . . 3 |
9 | risset 2498 | . . 3 | |
10 | 6, 8, 9 | 3bitr4i 211 | . 2 |
11 | 10 | eqriv 2167 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wcel 2141 wrex 2449 cep 4272 ccnv 4610 cec 6511 cqs 6512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-eprel 4274 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-ec 6515 df-qs 6519 |
This theorem is referenced by: dfcnqs 7803 |
Copyright terms: Public domain | W3C validator |