ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsid Unicode version

Theorem qsid 6578
Description: A set is equal to its quotient set mod converse epsilon. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
qsid  |-  ( A /. `'  _E  )  =  A

Proof of Theorem qsid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . . . 7  |-  x  e. 
_V
21ecid 6576 . . . . . 6  |-  [ x ] `'  _E  =  x
32eqeq2i 2181 . . . . 5  |-  ( y  =  [ x ] `'  _E  <->  y  =  x )
4 equcom 1699 . . . . 5  |-  ( y  =  x  <->  x  =  y )
53, 4bitri 183 . . . 4  |-  ( y  =  [ x ] `'  _E  <->  x  =  y
)
65rexbii 2477 . . 3  |-  ( E. x  e.  A  y  =  [ x ] `'  _E  <->  E. x  e.  A  x  =  y )
7 vex 2733 . . . 4  |-  y  e. 
_V
87elqs 6564 . . 3  |-  ( y  e.  ( A /. `'  _E  )  <->  E. x  e.  A  y  =  [ x ] `'  _E  )
9 risset 2498 . . 3  |-  ( y  e.  A  <->  E. x  e.  A  x  =  y )
106, 8, 93bitr4i 211 . 2  |-  ( y  e.  ( A /. `'  _E  )  <->  y  e.  A )
1110eqriv 2167 1  |-  ( A /. `'  _E  )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   E.wrex 2449    _E cep 4272   `'ccnv 4610   [cec 6511   /.cqs 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-eprel 4274  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-ec 6515  df-qs 6519
This theorem is referenced by:  dfcnqs  7803
  Copyright terms: Public domain W3C validator