Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qsid | Unicode version |
Description: A set is equal to its quotient set mod converse epsilon. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
qsid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . . . . . 7 | |
2 | 1 | ecid 6588 | . . . . . 6 |
3 | 2 | eqeq2i 2186 | . . . . 5 |
4 | equcom 1704 | . . . . 5 | |
5 | 3, 4 | bitri 184 | . . . 4 |
6 | 5 | rexbii 2482 | . . 3 |
7 | vex 2738 | . . . 4 | |
8 | 7 | elqs 6576 | . . 3 |
9 | risset 2503 | . . 3 | |
10 | 6, 8, 9 | 3bitr4i 212 | . 2 |
11 | 10 | eqriv 2172 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1353 wcel 2146 wrex 2454 cep 4281 ccnv 4619 cec 6523 cqs 6524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-eprel 4283 df-xp 4626 df-cnv 4628 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-ec 6527 df-qs 6531 |
This theorem is referenced by: dfcnqs 7815 |
Copyright terms: Public domain | W3C validator |