ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsid Unicode version

Theorem qsid 6745
Description: A set is equal to its quotient set mod converse epsilon. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
qsid  |-  ( A /. `'  _E  )  =  A

Proof of Theorem qsid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . . . . 7  |-  x  e. 
_V
21ecid 6743 . . . . . 6  |-  [ x ] `'  _E  =  x
32eqeq2i 2240 . . . . 5  |-  ( y  =  [ x ] `'  _E  <->  y  =  x )
4 equcom 1752 . . . . 5  |-  ( y  =  x  <->  x  =  y )
53, 4bitri 184 . . . 4  |-  ( y  =  [ x ] `'  _E  <->  x  =  y
)
65rexbii 2537 . . 3  |-  ( E. x  e.  A  y  =  [ x ] `'  _E  <->  E. x  e.  A  x  =  y )
7 vex 2802 . . . 4  |-  y  e. 
_V
87elqs 6731 . . 3  |-  ( y  e.  ( A /. `'  _E  )  <->  E. x  e.  A  y  =  [ x ] `'  _E  )
9 risset 2558 . . 3  |-  ( y  e.  A  <->  E. x  e.  A  x  =  y )
106, 8, 93bitr4i 212 . 2  |-  ( y  e.  ( A /. `'  _E  )  <->  y  e.  A )
1110eqriv 2226 1  |-  ( A /. `'  _E  )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   E.wrex 2509    _E cep 4377   `'ccnv 4717   [cec 6676   /.cqs 6677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-eprel 4379  df-xp 4724  df-cnv 4726  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-ec 6680  df-qs 6684
This theorem is referenced by:  dfcnqs  8024
  Copyright terms: Public domain W3C validator