ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsid Unicode version

Theorem qsid 6705
Description: A set is equal to its quotient set mod converse epsilon. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
qsid  |-  ( A /. `'  _E  )  =  A

Proof of Theorem qsid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2776 . . . . . . 7  |-  x  e. 
_V
21ecid 6703 . . . . . 6  |-  [ x ] `'  _E  =  x
32eqeq2i 2217 . . . . 5  |-  ( y  =  [ x ] `'  _E  <->  y  =  x )
4 equcom 1730 . . . . 5  |-  ( y  =  x  <->  x  =  y )
53, 4bitri 184 . . . 4  |-  ( y  =  [ x ] `'  _E  <->  x  =  y
)
65rexbii 2514 . . 3  |-  ( E. x  e.  A  y  =  [ x ] `'  _E  <->  E. x  e.  A  x  =  y )
7 vex 2776 . . . 4  |-  y  e. 
_V
87elqs 6691 . . 3  |-  ( y  e.  ( A /. `'  _E  )  <->  E. x  e.  A  y  =  [ x ] `'  _E  )
9 risset 2535 . . 3  |-  ( y  e.  A  <->  E. x  e.  A  x  =  y )
106, 8, 93bitr4i 212 . 2  |-  ( y  e.  ( A /. `'  _E  )  <->  y  e.  A )
1110eqriv 2203 1  |-  ( A /. `'  _E  )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2177   E.wrex 2486    _E cep 4347   `'ccnv 4687   [cec 6636   /.cqs 6637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4055  df-opab 4117  df-eprel 4349  df-xp 4694  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-ec 6640  df-qs 6644
This theorem is referenced by:  dfcnqs  7984
  Copyright terms: Public domain W3C validator