Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qsid | Unicode version |
Description: A set is equal to its quotient set mod converse epsilon. (Note: converse epsilon is not an equivalence relation.) (Contributed by NM, 13-Aug-1995.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
qsid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . . . . 7 | |
2 | 1 | ecid 6564 | . . . . . 6 |
3 | 2 | eqeq2i 2176 | . . . . 5 |
4 | equcom 1694 | . . . . 5 | |
5 | 3, 4 | bitri 183 | . . . 4 |
6 | 5 | rexbii 2473 | . . 3 |
7 | vex 2729 | . . . 4 | |
8 | 7 | elqs 6552 | . . 3 |
9 | risset 2494 | . . 3 | |
10 | 6, 8, 9 | 3bitr4i 211 | . 2 |
11 | 10 | eqriv 2162 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 wrex 2445 cep 4265 ccnv 4603 cec 6499 cqs 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-eprel 4267 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-ec 6503 df-qs 6507 |
This theorem is referenced by: dfcnqs 7782 |
Copyright terms: Public domain | W3C validator |