ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0 Unicode version

Theorem nqnq0 7356
Description: A positive fraction is a nonnegative fraction. (Contributed by Jim Kingdon, 18-Nov-2019.)
Assertion
Ref Expression
nqnq0  |-  Q.  C_ Q0

Proof of Theorem nqnq0
Dummy variables  v  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7263 . . . . 5  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
21eleq2i 2224 . . . 4  |-  ( y  e.  Q.  <->  y  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
3 vex 2715 . . . . 5  |-  y  e. 
_V
43elqs 6528 . . . 4  |-  ( y  e.  ( ( N. 
X.  N. ) /.  ~Q  ) 
<->  E. x  e.  ( N.  X.  N. )
y  =  [ x ]  ~Q  )
5 df-rex 2441 . . . 4  |-  ( E. x  e.  ( N. 
X.  N. ) y  =  [ x ]  ~Q  <->  E. x ( x  e.  ( N.  X.  N. )  /\  y  =  [
x ]  ~Q  )
)
62, 4, 53bitri 205 . . 3  |-  ( y  e.  Q.  <->  E. x
( x  e.  ( N.  X.  N. )  /\  y  =  [
x ]  ~Q  )
)
7 elxpi 4601 . . . . . . 7  |-  ( x  e.  ( N.  X.  N. )  ->  E. u E. v ( x  = 
<. u ,  v >.  /\  ( u  e.  N.  /\  v  e.  N. )
) )
8 nqnq0pi 7353 . . . . . . . . . . 11  |-  ( ( u  e.  N.  /\  v  e.  N. )  ->  [ <. u ,  v
>. ] ~Q0  =  [ <. u ,  v
>. ]  ~Q  )
98adantl 275 . . . . . . . . . 10  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  [ <. u ,  v >. ] ~Q0  =  [ <. u ,  v >. ]  ~Q  )
10 eceq1 6512 . . . . . . . . . . . 12  |-  ( x  =  <. u ,  v
>.  ->  [ x ] ~Q0  =  [ <. u ,  v >. ] ~Q0  )
11 eceq1 6512 . . . . . . . . . . . 12  |-  ( x  =  <. u ,  v
>.  ->  [ x ]  ~Q  =  [ <. u ,  v >. ]  ~Q  )
1210, 11eqeq12d 2172 . . . . . . . . . . 11  |-  ( x  =  <. u ,  v
>.  ->  ( [ x ] ~Q0  =  [ x ]  ~Q  <->  [
<. u ,  v >. ] ~Q0  =  [ <. u ,  v
>. ]  ~Q  ) )
1312adantr 274 . . . . . . . . . 10  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  ( [
x ] ~Q0  =  [ x ]  ~Q 
<->  [ <. u ,  v
>. ] ~Q0  =  [ <. u ,  v
>. ]  ~Q  ) )
149, 13mpbird 166 . . . . . . . . 9  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  [ x ] ~Q0  =  [ x ]  ~Q  )
15 pinn 7224 . . . . . . . . . . . . 13  |-  ( u  e.  N.  ->  u  e.  om )
16 opelxpi 4617 . . . . . . . . . . . . 13  |-  ( ( u  e.  om  /\  v  e.  N. )  -> 
<. u ,  v >.  e.  ( om  X.  N. ) )
1715, 16sylan 281 . . . . . . . . . . . 12  |-  ( ( u  e.  N.  /\  v  e.  N. )  -> 
<. u ,  v >.  e.  ( om  X.  N. ) )
1817adantl 275 . . . . . . . . . . 11  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  <. u ,  v >.  e.  ( om  X.  N. ) )
19 eleq1 2220 . . . . . . . . . . . 12  |-  ( x  =  <. u ,  v
>.  ->  ( x  e.  ( om  X.  N. ) 
<-> 
<. u ,  v >.  e.  ( om  X.  N. ) ) )
2019adantr 274 . . . . . . . . . . 11  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  ( x  e.  ( om  X.  N. ) 
<-> 
<. u ,  v >.  e.  ( om  X.  N. ) ) )
2118, 20mpbird 166 . . . . . . . . . 10  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  x  e.  ( om  X.  N. )
)
22 enq0ex 7354 . . . . . . . . . . . 12  |- ~Q0  e.  _V
2322ecelqsi 6531 . . . . . . . . . . 11  |-  ( x  e.  ( om  X.  N. )  ->  [ x ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
24 df-nq0 7340 . . . . . . . . . . 11  |- Q0  =  ( ( om 
X.  N. ) /. ~Q0  )
2523, 24eleqtrrdi 2251 . . . . . . . . . 10  |-  ( x  e.  ( om  X.  N. )  ->  [ x ] ~Q0  e. Q0 )
2621, 25syl 14 . . . . . . . . 9  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  [ x ] ~Q0  e. Q0 )
2714, 26eqeltrrd 2235 . . . . . . . 8  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  [ x ]  ~Q  e. Q0 )
2827exlimivv 1876 . . . . . . 7  |-  ( E. u E. v ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  [ x ]  ~Q  e. Q0 )
297, 28syl 14 . . . . . 6  |-  ( x  e.  ( N.  X.  N. )  ->  [ x ]  ~Q  e. Q0 )
3029adantr 274 . . . . 5  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  =  [ x ]  ~Q  )  ->  [ x ]  ~Q  e. Q0 )
31 eleq1 2220 . . . . . 6  |-  ( y  =  [ x ]  ~Q  ->  ( y  e. Q0  <->  [ x ]  ~Q  e. Q0 ) )
3231adantl 275 . . . . 5  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  =  [ x ]  ~Q  )  ->  ( y  e. Q0  <->  [ x ]  ~Q  e. Q0 ) )
3330, 32mpbird 166 . . . 4  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  =  [ x ]  ~Q  )  ->  y  e. Q0 )
3433exlimiv 1578 . . 3  |-  ( E. x ( x  e.  ( N.  X.  N. )  /\  y  =  [
x ]  ~Q  )  ->  y  e. Q0 )
356, 34sylbi 120 . 2  |-  ( y  e.  Q.  ->  y  e. Q0 )
3635ssriv 3132 1  |-  Q.  C_ Q0
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1335   E.wex 1472    e. wcel 2128   E.wrex 2436    C_ wss 3102   <.cop 3563   omcom 4548    X. cxp 4583   [cec 6475   /.cqs 6476   N.cnpi 7187    ~Q ceq 7194   Q.cnq 7195   ~Q0 ceq0 7201  Q0cnq0 7202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-oadd 6364  df-omul 6365  df-er 6477  df-ec 6479  df-qs 6483  df-ni 7219  df-mi 7221  df-enq 7262  df-nqqs 7263  df-enq0 7339  df-nq0 7340
This theorem is referenced by:  prarloclem5  7415  prarloclemcalc  7417
  Copyright terms: Public domain W3C validator