ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0 Unicode version

Theorem nqnq0 7403
Description: A positive fraction is a nonnegative fraction. (Contributed by Jim Kingdon, 18-Nov-2019.)
Assertion
Ref Expression
nqnq0  |-  Q.  C_ Q0

Proof of Theorem nqnq0
Dummy variables  v  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7310 . . . . 5  |-  Q.  =  ( ( N.  X.  N. ) /.  ~Q  )
21eleq2i 2237 . . . 4  |-  ( y  e.  Q.  <->  y  e.  ( ( N.  X.  N. ) /.  ~Q  )
)
3 vex 2733 . . . . 5  |-  y  e. 
_V
43elqs 6564 . . . 4  |-  ( y  e.  ( ( N. 
X.  N. ) /.  ~Q  ) 
<->  E. x  e.  ( N.  X.  N. )
y  =  [ x ]  ~Q  )
5 df-rex 2454 . . . 4  |-  ( E. x  e.  ( N. 
X.  N. ) y  =  [ x ]  ~Q  <->  E. x ( x  e.  ( N.  X.  N. )  /\  y  =  [
x ]  ~Q  )
)
62, 4, 53bitri 205 . . 3  |-  ( y  e.  Q.  <->  E. x
( x  e.  ( N.  X.  N. )  /\  y  =  [
x ]  ~Q  )
)
7 elxpi 4627 . . . . . . 7  |-  ( x  e.  ( N.  X.  N. )  ->  E. u E. v ( x  = 
<. u ,  v >.  /\  ( u  e.  N.  /\  v  e.  N. )
) )
8 nqnq0pi 7400 . . . . . . . . . . 11  |-  ( ( u  e.  N.  /\  v  e.  N. )  ->  [ <. u ,  v
>. ] ~Q0  =  [ <. u ,  v
>. ]  ~Q  )
98adantl 275 . . . . . . . . . 10  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  [ <. u ,  v >. ] ~Q0  =  [ <. u ,  v >. ]  ~Q  )
10 eceq1 6548 . . . . . . . . . . . 12  |-  ( x  =  <. u ,  v
>.  ->  [ x ] ~Q0  =  [ <. u ,  v >. ] ~Q0  )
11 eceq1 6548 . . . . . . . . . . . 12  |-  ( x  =  <. u ,  v
>.  ->  [ x ]  ~Q  =  [ <. u ,  v >. ]  ~Q  )
1210, 11eqeq12d 2185 . . . . . . . . . . 11  |-  ( x  =  <. u ,  v
>.  ->  ( [ x ] ~Q0  =  [ x ]  ~Q  <->  [
<. u ,  v >. ] ~Q0  =  [ <. u ,  v
>. ]  ~Q  ) )
1312adantr 274 . . . . . . . . . 10  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  ( [
x ] ~Q0  =  [ x ]  ~Q 
<->  [ <. u ,  v
>. ] ~Q0  =  [ <. u ,  v
>. ]  ~Q  ) )
149, 13mpbird 166 . . . . . . . . 9  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  [ x ] ~Q0  =  [ x ]  ~Q  )
15 pinn 7271 . . . . . . . . . . . . 13  |-  ( u  e.  N.  ->  u  e.  om )
16 opelxpi 4643 . . . . . . . . . . . . 13  |-  ( ( u  e.  om  /\  v  e.  N. )  -> 
<. u ,  v >.  e.  ( om  X.  N. ) )
1715, 16sylan 281 . . . . . . . . . . . 12  |-  ( ( u  e.  N.  /\  v  e.  N. )  -> 
<. u ,  v >.  e.  ( om  X.  N. ) )
1817adantl 275 . . . . . . . . . . 11  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  <. u ,  v >.  e.  ( om  X.  N. ) )
19 eleq1 2233 . . . . . . . . . . . 12  |-  ( x  =  <. u ,  v
>.  ->  ( x  e.  ( om  X.  N. ) 
<-> 
<. u ,  v >.  e.  ( om  X.  N. ) ) )
2019adantr 274 . . . . . . . . . . 11  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  ( x  e.  ( om  X.  N. ) 
<-> 
<. u ,  v >.  e.  ( om  X.  N. ) ) )
2118, 20mpbird 166 . . . . . . . . . 10  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  x  e.  ( om  X.  N. )
)
22 enq0ex 7401 . . . . . . . . . . . 12  |- ~Q0  e.  _V
2322ecelqsi 6567 . . . . . . . . . . 11  |-  ( x  e.  ( om  X.  N. )  ->  [ x ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
24 df-nq0 7387 . . . . . . . . . . 11  |- Q0  =  ( ( om 
X.  N. ) /. ~Q0  )
2523, 24eleqtrrdi 2264 . . . . . . . . . 10  |-  ( x  e.  ( om  X.  N. )  ->  [ x ] ~Q0  e. Q0 )
2621, 25syl 14 . . . . . . . . 9  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  [ x ] ~Q0  e. Q0 )
2714, 26eqeltrrd 2248 . . . . . . . 8  |-  ( ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  [ x ]  ~Q  e. Q0 )
2827exlimivv 1889 . . . . . . 7  |-  ( E. u E. v ( x  =  <. u ,  v >.  /\  (
u  e.  N.  /\  v  e.  N. )
)  ->  [ x ]  ~Q  e. Q0 )
297, 28syl 14 . . . . . 6  |-  ( x  e.  ( N.  X.  N. )  ->  [ x ]  ~Q  e. Q0 )
3029adantr 274 . . . . 5  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  =  [ x ]  ~Q  )  ->  [ x ]  ~Q  e. Q0 )
31 eleq1 2233 . . . . . 6  |-  ( y  =  [ x ]  ~Q  ->  ( y  e. Q0  <->  [ x ]  ~Q  e. Q0 ) )
3231adantl 275 . . . . 5  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  =  [ x ]  ~Q  )  ->  ( y  e. Q0  <->  [ x ]  ~Q  e. Q0 ) )
3330, 32mpbird 166 . . . 4  |-  ( ( x  e.  ( N. 
X.  N. )  /\  y  =  [ x ]  ~Q  )  ->  y  e. Q0 )
3433exlimiv 1591 . . 3  |-  ( E. x ( x  e.  ( N.  X.  N. )  /\  y  =  [
x ]  ~Q  )  ->  y  e. Q0 )
356, 34sylbi 120 . 2  |-  ( y  e.  Q.  ->  y  e. Q0 )
3635ssriv 3151 1  |-  Q.  C_ Q0
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   E.wrex 2449    C_ wss 3121   <.cop 3586   omcom 4574    X. cxp 4609   [cec 6511   /.cqs 6512   N.cnpi 7234    ~Q ceq 7241   Q.cnq 7242   ~Q0 ceq0 7248  Q0cnq0 7249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-mi 7268  df-enq 7309  df-nqqs 7310  df-enq0 7386  df-nq0 7387
This theorem is referenced by:  prarloclem5  7462  prarloclemcalc  7464
  Copyright terms: Public domain W3C validator