| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nqnq0 | Unicode version | ||
| Description: A positive fraction is a nonnegative fraction. (Contributed by Jim Kingdon, 18-Nov-2019.) |
| Ref | Expression |
|---|---|
| nqnq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nqqs 7523 |
. . . . 5
| |
| 2 | 1 | eleq2i 2296 |
. . . 4
|
| 3 | vex 2802 |
. . . . 5
| |
| 4 | 3 | elqs 6723 |
. . . 4
|
| 5 | df-rex 2514 |
. . . 4
| |
| 6 | 2, 4, 5 | 3bitri 206 |
. . 3
|
| 7 | elxpi 4732 |
. . . . . . 7
| |
| 8 | nqnq0pi 7613 |
. . . . . . . . . . 11
| |
| 9 | 8 | adantl 277 |
. . . . . . . . . 10
|
| 10 | eceq1 6705 |
. . . . . . . . . . . 12
| |
| 11 | eceq1 6705 |
. . . . . . . . . . . 12
| |
| 12 | 10, 11 | eqeq12d 2244 |
. . . . . . . . . . 11
|
| 13 | 12 | adantr 276 |
. . . . . . . . . 10
|
| 14 | 9, 13 | mpbird 167 |
. . . . . . . . 9
|
| 15 | pinn 7484 |
. . . . . . . . . . . . 13
| |
| 16 | opelxpi 4748 |
. . . . . . . . . . . . 13
| |
| 17 | 15, 16 | sylan 283 |
. . . . . . . . . . . 12
|
| 18 | 17 | adantl 277 |
. . . . . . . . . . 11
|
| 19 | eleq1 2292 |
. . . . . . . . . . . 12
| |
| 20 | 19 | adantr 276 |
. . . . . . . . . . 11
|
| 21 | 18, 20 | mpbird 167 |
. . . . . . . . . 10
|
| 22 | enq0ex 7614 |
. . . . . . . . . . . 12
| |
| 23 | 22 | ecelqsi 6726 |
. . . . . . . . . . 11
|
| 24 | df-nq0 7600 |
. . . . . . . . . . 11
| |
| 25 | 23, 24 | eleqtrrdi 2323 |
. . . . . . . . . 10
|
| 26 | 21, 25 | syl 14 |
. . . . . . . . 9
|
| 27 | 14, 26 | eqeltrrd 2307 |
. . . . . . . 8
|
| 28 | 27 | exlimivv 1943 |
. . . . . . 7
|
| 29 | 7, 28 | syl 14 |
. . . . . 6
|
| 30 | 29 | adantr 276 |
. . . . 5
|
| 31 | eleq1 2292 |
. . . . . 6
| |
| 32 | 31 | adantl 277 |
. . . . 5
|
| 33 | 30, 32 | mpbird 167 |
. . . 4
|
| 34 | 33 | exlimiv 1644 |
. . 3
|
| 35 | 6, 34 | sylbi 121 |
. 2
|
| 36 | 35 | ssriv 3228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-oadd 6556 df-omul 6557 df-er 6670 df-ec 6672 df-qs 6676 df-ni 7479 df-mi 7481 df-enq 7522 df-nqqs 7523 df-enq0 7599 df-nq0 7600 |
| This theorem is referenced by: prarloclem5 7675 prarloclemcalc 7677 |
| Copyright terms: Public domain | W3C validator |