Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nqnq0 | Unicode version |
Description: A positive fraction is a nonnegative fraction. (Contributed by Jim Kingdon, 18-Nov-2019.) |
Ref | Expression |
---|---|
nqnq0 | Q0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nqqs 7263 | . . . . 5 | |
2 | 1 | eleq2i 2224 | . . . 4 |
3 | vex 2715 | . . . . 5 | |
4 | 3 | elqs 6528 | . . . 4 |
5 | df-rex 2441 | . . . 4 | |
6 | 2, 4, 5 | 3bitri 205 | . . 3 |
7 | elxpi 4601 | . . . . . . 7 | |
8 | nqnq0pi 7353 | . . . . . . . . . . 11 ~Q0 | |
9 | 8 | adantl 275 | . . . . . . . . . 10 ~Q0 |
10 | eceq1 6512 | . . . . . . . . . . . 12 ~Q0 ~Q0 | |
11 | eceq1 6512 | . . . . . . . . . . . 12 | |
12 | 10, 11 | eqeq12d 2172 | . . . . . . . . . . 11 ~Q0 ~Q0 |
13 | 12 | adantr 274 | . . . . . . . . . 10 ~Q0 ~Q0 |
14 | 9, 13 | mpbird 166 | . . . . . . . . 9 ~Q0 |
15 | pinn 7224 | . . . . . . . . . . . . 13 | |
16 | opelxpi 4617 | . . . . . . . . . . . . 13 | |
17 | 15, 16 | sylan 281 | . . . . . . . . . . . 12 |
18 | 17 | adantl 275 | . . . . . . . . . . 11 |
19 | eleq1 2220 | . . . . . . . . . . . 12 | |
20 | 19 | adantr 274 | . . . . . . . . . . 11 |
21 | 18, 20 | mpbird 166 | . . . . . . . . . 10 |
22 | enq0ex 7354 | . . . . . . . . . . . 12 ~Q0 | |
23 | 22 | ecelqsi 6531 | . . . . . . . . . . 11 ~Q0 ~Q0 |
24 | df-nq0 7340 | . . . . . . . . . . 11 Q0 ~Q0 | |
25 | 23, 24 | eleqtrrdi 2251 | . . . . . . . . . 10 ~Q0 Q0 |
26 | 21, 25 | syl 14 | . . . . . . . . 9 ~Q0 Q0 |
27 | 14, 26 | eqeltrrd 2235 | . . . . . . . 8 Q0 |
28 | 27 | exlimivv 1876 | . . . . . . 7 Q0 |
29 | 7, 28 | syl 14 | . . . . . 6 Q0 |
30 | 29 | adantr 274 | . . . . 5 Q0 |
31 | eleq1 2220 | . . . . . 6 Q0 Q0 | |
32 | 31 | adantl 275 | . . . . 5 Q0 Q0 |
33 | 30, 32 | mpbird 166 | . . . 4 Q0 |
34 | 33 | exlimiv 1578 | . . 3 Q0 |
35 | 6, 34 | sylbi 120 | . 2 Q0 |
36 | 35 | ssriv 3132 | 1 Q0 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1335 wex 1472 wcel 2128 wrex 2436 wss 3102 cop 3563 com 4548 cxp 4583 cec 6475 cqs 6476 cnpi 7187 ceq 7194 cnq 7195 ~Q0 ceq0 7201 Q0cnq0 7202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-irdg 6314 df-oadd 6364 df-omul 6365 df-er 6477 df-ec 6479 df-qs 6483 df-ni 7219 df-mi 7221 df-enq 7262 df-nqqs 7263 df-enq0 7339 df-nq0 7340 |
This theorem is referenced by: prarloclem5 7415 prarloclemcalc 7417 |
Copyright terms: Public domain | W3C validator |