Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elqs | GIF version |
Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
elqs.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elqs | ⊢ (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqs.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | elqsg 6551 | . 2 ⊢ (𝐵 ∈ V → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 Vcvv 2726 [cec 6499 / cqs 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-qs 6507 |
This theorem is referenced by: qsss 6560 qsid 6566 erovlem 6593 nqnq0 7382 |
Copyright terms: Public domain | W3C validator |