| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssexg | Unicode version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| ssexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3208 |
. . . 4
| |
| 2 | 1 | imbi1d 231 |
. . 3
|
| 3 | vex 2766 |
. . . 4
| |
| 4 | 3 | ssex 4171 |
. . 3
|
| 5 | 2, 4 | vtoclg 2824 |
. 2
|
| 6 | 5 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssexd 4174 difexg 4175 rabexg 4177 elssabg 4182 elpw2g 4190 abssexg 4216 snexg 4218 sess1 4373 sess2 4374 trsuc 4458 unexb 4478 abnexg 4482 uniexb 4509 xpexg 4778 riinint 4928 dmexg 4931 rnexg 4932 resexg 4987 resiexg 4992 imaexg 5024 exse2 5044 cnvexg 5208 coexg 5215 fabexg 5446 f1oabexg 5517 relrnfvex 5577 fvexg 5578 sefvex 5580 mptfvex 5648 mptexg 5788 ofres 6151 resfunexgALT 6166 cofunexg 6167 fnexALT 6169 f1dmex 6174 oprabexd 6185 mpoexxg 6269 tposexg 6317 frecabex 6457 erex 6617 mapex 6714 pmvalg 6719 elpmg 6724 elmapssres 6733 pmss12g 6735 ixpexgg 6782 ssdomg 6838 fiprc 6875 fival 7037 iccen 10083 wrdexb 10949 shftfvalg 10985 shftfval 10988 tgval 12943 tgvalex 12944 toponsspwpwg 14268 eltg 14298 eltg2 14299 tgss 14309 basgen2 14327 bastop1 14329 topnex 14332 resttopon 14417 restabs 14421 lmfval 14438 cnrest 14481 txss12 14512 metrest 14752 dvbss 14931 dvcnp2cntop 14945 dvaddxxbr 14947 dvmulxxbr 14948 elply2 14981 plyf 14983 plyss 14984 elplyr 14986 plyaddlem 14995 plymullem 14996 plyco 15005 |
| Copyright terms: Public domain | W3C validator |