| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssexg | Unicode version | ||
| Description: The subset of a set is also a set. Exercise 3 of [TakeutiZaring] p. 22 (generalized). (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| ssexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3208 |
. . . 4
| |
| 2 | 1 | imbi1d 231 |
. . 3
|
| 3 | vex 2766 |
. . . 4
| |
| 4 | 3 | ssex 4171 |
. . 3
|
| 5 | 2, 4 | vtoclg 2824 |
. 2
|
| 6 | 5 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssexd 4174 difexg 4175 rabexg 4177 elssabg 4182 elpw2g 4190 abssexg 4216 snexg 4218 sess1 4373 sess2 4374 trsuc 4458 unexb 4478 abnexg 4482 uniexb 4509 xpexg 4778 riinint 4928 dmexg 4931 rnexg 4932 resexg 4987 resiexg 4992 imaexg 5024 exse2 5044 cnvexg 5208 coexg 5215 fabexg 5448 f1oabexg 5519 relrnfvex 5579 fvexg 5580 sefvex 5582 mptfvex 5650 mptexg 5790 ofres 6154 resfunexgALT 6174 cofunexg 6175 fnexALT 6177 f1dmex 6182 oprabexd 6193 mpoexxg 6277 tposexg 6325 frecabex 6465 erex 6625 mapex 6722 pmvalg 6727 elpmg 6732 elmapssres 6741 pmss12g 6743 ixpexgg 6790 ssdomg 6846 fiprc 6883 fival 7045 iccen 10098 wrdexb 10964 shftfvalg 11000 shftfval 11003 tgval 12964 tgvalex 12965 toponsspwpwg 14342 eltg 14372 eltg2 14373 tgss 14383 basgen2 14401 bastop1 14403 topnex 14406 resttopon 14491 restabs 14495 lmfval 14512 cnrest 14555 txss12 14586 metrest 14826 dvbss 15005 dvcnp2cntop 15019 dvaddxxbr 15021 dvmulxxbr 15022 elply2 15055 plyf 15057 plyss 15058 elplyr 15060 plyaddlem 15069 plymullem 15070 plyco 15079 |
| Copyright terms: Public domain | W3C validator |