![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elssabg | GIF version |
Description: Membership in a class abstraction involving a subset. Unlike elabg 2883, 𝐴 does not have to be a set. (Contributed by NM, 29-Aug-2006.) |
Ref | Expression |
---|---|
elssabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elssabg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝜑)} ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 4141 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
2 | 1 | expcom 116 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
3 | 2 | adantrd 279 | . 2 ⊢ (𝐵 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝜓) → 𝐴 ∈ V)) |
4 | sseq1 3178 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
5 | elssabg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 4, 5 | anbi12d 473 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ 𝐵 ∧ 𝜑) ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) |
7 | 6 | elab3g 2888 | . 2 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝜓) → 𝐴 ∈ V) → (𝐴 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝜑)} ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) |
8 | 3, 7 | syl 14 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝜑)} ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {cab 2163 Vcvv 2737 ⊆ wss 3129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 ax-sep 4120 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-in 3135 df-ss 3142 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |