ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elssabg GIF version

Theorem elssabg 4192
Description: Membership in a class abstraction involving a subset. Unlike elabg 2919, 𝐴 does not have to be a set. (Contributed by NM, 29-Aug-2006.)
Hypothesis
Ref Expression
elssabg.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elssabg (𝐵𝑉 → (𝐴 ∈ {𝑥 ∣ (𝑥𝐵𝜑)} ↔ (𝐴𝐵𝜓)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elssabg
StepHypRef Expression
1 ssexg 4183 . . . 4 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
21expcom 116 . . 3 (𝐵𝑉 → (𝐴𝐵𝐴 ∈ V))
32adantrd 279 . 2 (𝐵𝑉 → ((𝐴𝐵𝜓) → 𝐴 ∈ V))
4 sseq1 3216 . . . 4 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
5 elssabg.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
64, 5anbi12d 473 . . 3 (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
76elab3g 2924 . 2 (((𝐴𝐵𝜓) → 𝐴 ∈ V) → (𝐴 ∈ {𝑥 ∣ (𝑥𝐵𝜑)} ↔ (𝐴𝐵𝜓)))
83, 7syl 14 1 (𝐵𝑉 → (𝐴 ∈ {𝑥 ∣ (𝑥𝐵𝜑)} ↔ (𝐴𝐵𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  {cab 2191  Vcvv 2772  wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4162
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator