ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elssabg GIF version

Theorem elssabg 4127
Description: Membership in a class abstraction involving a subset. Unlike elabg 2872, 𝐴 does not have to be a set. (Contributed by NM, 29-Aug-2006.)
Hypothesis
Ref Expression
elssabg.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elssabg (𝐵𝑉 → (𝐴 ∈ {𝑥 ∣ (𝑥𝐵𝜑)} ↔ (𝐴𝐵𝜓)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem elssabg
StepHypRef Expression
1 ssexg 4121 . . . 4 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
21expcom 115 . . 3 (𝐵𝑉 → (𝐴𝐵𝐴 ∈ V))
32adantrd 277 . 2 (𝐵𝑉 → ((𝐴𝐵𝜓) → 𝐴 ∈ V))
4 sseq1 3165 . . . 4 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
5 elssabg.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
64, 5anbi12d 465 . . 3 (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
76elab3g 2877 . 2 (((𝐴𝐵𝜓) → 𝐴 ∈ V) → (𝐴 ∈ {𝑥 ∣ (𝑥𝐵𝜑)} ↔ (𝐴𝐵𝜓)))
83, 7syl 14 1 (𝐵𝑉 → (𝐴 ∈ {𝑥 ∣ (𝑥𝐵𝜑)} ↔ (𝐴𝐵𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  {cab 2151  Vcvv 2726  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator