Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elssabg | GIF version |
Description: Membership in a class abstraction involving a subset. Unlike elabg 2854, 𝐴 does not have to be a set. (Contributed by NM, 29-Aug-2006.) |
Ref | Expression |
---|---|
elssabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elssabg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝜑)} ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 4099 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
2 | 1 | expcom 115 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
3 | 2 | adantrd 277 | . 2 ⊢ (𝐵 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝜓) → 𝐴 ∈ V)) |
4 | sseq1 3147 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
5 | elssabg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 4, 5 | anbi12d 465 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ 𝐵 ∧ 𝜑) ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) |
7 | 6 | elab3g 2859 | . 2 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝜓) → 𝐴 ∈ V) → (𝐴 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝜑)} ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) |
8 | 3, 7 | syl 14 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝜑)} ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1332 ∈ wcel 2125 {cab 2140 Vcvv 2709 ⊆ wss 3098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 ax-sep 4078 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-in 3104 df-ss 3111 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |