ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inteximm Unicode version

Theorem inteximm 4232
Description: The intersection of an inhabited class exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
inteximm  |-  ( E. x  x  e.  A  ->  |^| A  e.  _V )
Distinct variable group:    x, A

Proof of Theorem inteximm
StepHypRef Expression
1 intss1 3937 . . 3  |-  ( x  e.  A  ->  |^| A  C_  x )
2 vex 2802 . . . 4  |-  x  e. 
_V
32ssex 4220 . . 3  |-  ( |^| A  C_  x  ->  |^| A  e.  _V )
41, 3syl 14 . 2  |-  ( x  e.  A  ->  |^| A  e.  _V )
54exlimiv 1644 1  |-  ( E. x  x  e.  A  ->  |^| A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1538    e. wcel 2200   _Vcvv 2799    C_ wss 3197   |^|cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4201
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-int 3923
This theorem is referenced by:  intexabim  4235  iinexgm  4237  onintonm  4606  elfi2  7127  elfir  7128  fifo  7135
  Copyright terms: Public domain W3C validator