ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inteximm Unicode version

Theorem inteximm 4178
Description: The intersection of an inhabited class exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
inteximm  |-  ( E. x  x  e.  A  ->  |^| A  e.  _V )
Distinct variable group:    x, A

Proof of Theorem inteximm
StepHypRef Expression
1 intss1 3885 . . 3  |-  ( x  e.  A  ->  |^| A  C_  x )
2 vex 2763 . . . 4  |-  x  e. 
_V
32ssex 4166 . . 3  |-  ( |^| A  C_  x  ->  |^| A  e.  _V )
41, 3syl 14 . 2  |-  ( x  e.  A  ->  |^| A  e.  _V )
54exlimiv 1609 1  |-  ( E. x  x  e.  A  ->  |^| A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1503    e. wcel 2164   _Vcvv 2760    C_ wss 3153   |^|cint 3870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4147
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-int 3871
This theorem is referenced by:  intexabim  4181  iinexgm  4183  onintonm  4549  elfi2  7031  elfir  7032  fifo  7039
  Copyright terms: Public domain W3C validator