Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inteximm | Unicode version |
Description: The intersection of an inhabited class exists. (Contributed by Jim Kingdon, 27-Aug-2018.) |
Ref | Expression |
---|---|
inteximm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intss1 3822 | . . 3 | |
2 | vex 2715 | . . . 4 | |
3 | 2 | ssex 4101 | . . 3 |
4 | 1, 3 | syl 14 | . 2 |
5 | 4 | exlimiv 1578 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wex 1472 wcel 2128 cvv 2712 wss 3102 cint 3807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-sep 4082 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 df-ss 3115 df-int 3808 |
This theorem is referenced by: intexabim 4113 iinexgm 4115 onintonm 4476 elfi2 6916 elfir 6917 fifo 6924 |
Copyright terms: Public domain | W3C validator |